首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper provides a saddlepoint approximation to the distribution of the sample version of Kendall's τ, which is a measure of association between two samples. The saddlepoint approximation is compared with the Edgeworth and the normal approximations, and with the bootstrap resampling distribution. A numerical study shows that with small sample sizes the saddlepoint approximation outperforms both the normal and the Edgeworth approximations. This paper gives also an analytical comparison between approximated and exact cumulants of the sample Kendall's τ when the two samples are independent.  相似文献   

2.
For a sample from a given distribution the difference of two order statistics and the Studentized quantile are statistics whose distribution is needed to obtain tests and confidence intervals for quantiles and quantile differences. This paper gives saddlepoint approximations for densities and saddlepoint approximations of the Lugannani–Rice form for tail probabilities of these statistics. The relative errors of the approximations are n −1 uniformly in a neighbourhood of the parameters and this uniformity is global if the densities are log-concave.  相似文献   

3.
The single bootstrap is implemented by using a saddlepoint approximation to determine estimates for the survival and hazard functions of first-passage times in complicated semi-Markov processes. The double bootstrap is also implemented by resampling saddlepoint inversions and provides BCa confidence bands for these functions. Confidence intervals for the mean and variance of first-passage times are easily computed. A new characterization of the asymptotic hazard rate for survival times is presented and leads to an indirect method for constructing its bootstrap confidence interval.  相似文献   

4.
Many nonparametric tests in one sample problem, matched pairs, and competingrisks under censoring have the same underlying permutation distribution. This article proposes a saddlepoint approximation to the exact p-values of these tests instead of the asymptotic approximations. The performance of the saddlepoint approximation is assessed by using simulation studies that show the superiority of the saddlepoint methods over the asymptotic approximations in several settings. The use of the saddlepoint to approximate the p-values of class of two sample tests under complete randomized design is also discussed.  相似文献   

5.
Partial Saddlepoint Approximations for Transformed Means   总被引:2,自引:0,他引:2  
The full saddlepoint approximation for real valued smooth functions of means requires the existence of the joint cumulant generating function for the entire vector of random variables which are being transformed. We propose a mixed saddlepoint-Edgeworth approximation requiring the existence of a cumulant generating function for only part of the random vector considered, while retaining partially the relative nature of the errors. Tail probability approximations are obtained under conditions which enable the approximations to be used in resampling situations and hence to obtain a result on the relative error of coverage in the case of the bootstrap approximation to the confidence interval for the Studentized mean.  相似文献   

6.
广义卡方型混合分布在许多非参数检验问题中有着广泛运用。通常采用正态分布近似这类分布,但是在非大样本的情况下,正态近似的效果并不理想。运用鞍点逼近技术近似广义卡方型混合随机变量的密度函数和分布函数,并且与正态近似方法以及卡方近似方法进行了比较。模拟表明鞍点逼近效果要优于其余两种方法,特别是密度函数尾部区域。  相似文献   

7.
In many situations saddlepoint approximations can replace the Monte Carlo simulation typically used to find the bootstrap distribution of a statistic. We explain how bootstrap and permutation distributions can be expressed as conditional distributions and how methods for linear programming and for fitting generalized linear models can be used to find saddlepoint approximations to these distributions. The ideas are illustrated using an example from insurance.  相似文献   

8.
The simplest construction of bootstrap likelihoods involves two levels of bootstrapping, kernel density estimation, and non-parametric curve-smoothing. We describe more accurate and efficient constructions, based on smoothing at the first level of nested bootstraps and saddlepoint approximation to remove second-level bootstrap variation. Detailed illustrations are given.  相似文献   

9.
The saddlepoint approximation formulas provide versatile tools for analytic approximation of the tail expectation of a random variable by approximating the complex Laplace integral of the tail expectation expressed in terms of the cumulant generating function of the random variable. We generalize the saddlepoint approximation formulas for calculating tail expectations from the usual Gaussian base distribution to an arbitrary base distribution. Specific discussion is presented on the criteria of choosing the base distribution that fits better the underlying distribution. Numerical performance and comparison of accuracy are made among different saddlepoint approximation formulas. Improved accuracy of the saddlepoint approximations to tail expectations is revealed when proper base distributions are chosen. We also demonstrate enhanced accuracy of the generalized saddlepoint approximation formulas under non-Gaussian base distributions in pricing European options on continuous integrated variance under the Heston stochastic volatility model.  相似文献   

10.
The standard bootstrap and two commonly used types of smoothed bootstrap are investigated. The saddlepoint approximations are used to evaluate the accuracy of the three bootstrap estimates of the density of a sample mean. The optimal choice for the smoothing parameter is obtained when smoothing is useful in reducing the mean squared error.  相似文献   

11.
It is well known that saddlepoint expansions lead to accurate approximations to the cumulative distributions and densities of a sample mean and other simple linear statistics. The use of such expansions is explored in a broader situation. The saddlepoint formula for the tail probability of a certain type of nonlinear statistic is derived. The relative error of O(n–1), as in the linear case, is retained. A simple example is considered, to illustrate the great accuracy of the approximation.  相似文献   

12.
A dual acceptance criterion in terms of the sample mean and an extremum (minimum or maximum) has been used in many inspection procedures in diverse industries. An approximation is given in Vangel (Technometrics, 2002, pp. 242-248) for the joint distribution of the sample mean and an extremum when the population is normally distributed. In this paper we obtain a simple expression that depends on the distribution of the sample mean and the truncated sample mean. This expression allows us to evaluate the joint distribution exactly, in two cases, or approximately, in more general cases, making the dual acceptance criterion easier to calculate in practice. We present a saddlepoint approximation for the joint tail probability, with the application to the dual acceptance criterion under the assumption of normality.  相似文献   

13.
Abstract.  We propose an easy to implement method for making small sample parametric inference about the root of an estimating equation expressible as a quadratic form in normal random variables. It is based on saddlepoint approximations to the distribution of the estimating equation whose unique root is a parameter's maximum likelihood estimator (MLE), while substituting conditional MLEs for the remaining (nuisance) parameters. Monotoncity of the estimating equation in its parameter argument enables us to relate these approximations to those for the estimator of interest. The proposed method is equivalent to a parametric bootstrap percentile approach where Monte Carlo simulation is replaced by saddlepoint approximation. It finds applications in many areas of statistics including, nonlinear regression, time series analysis, inference on ratios of regression parameters in linear models and calibration. We demonstrate the method in the context of some classical examples from nonlinear regression models and ratios of regression parameter problems. Simulation results for these show that the proposed method, apart from being generally easier to implement, yields confidence intervals with lengths and coverage probabilities that compare favourably with those obtained from several competing methods proposed in the literature over the past half-century.  相似文献   

14.
Abstract

The problem of testing Rayleigh distribution against exponentiality, based on a random sample of observations is considered. This problem arises in survival analysis, when testing a linearly increasing hazard function against a constant hazard function. It is shown that for this problem the most powerful invariant test is equivalent to the “ratio of maximized likelihoods” (RML) test. However, since the two families are separate, the RML test statistic does not have the usual asymptotic chi-square distribution. Normal and saddlepoint approximations to the distribution of the RML test statistic are derived. Simulations show that saddlepoint approximation is more accurate than the normal approximation, especially for tail probabilities that are the main values of interest in hypothesis testing.  相似文献   

15.
We show the second-order relative accuracy, on bounded sets, of the Studentized bootstrap, exponentially tilted bootstrap and nonparametric likelihood tilted bootstrap, for means and smooth functions of means. We also consider the relative errors for larger deviations. Our method exploits certain connections between Edgeworth and saddlepoint approximations to simplify the computations.  相似文献   

16.
Abstract

Sample size calculation is an important component in designing an experiment or a survey. In a wide variety of fields—including management science, insurance, and biological and medical science—truncated normal distributions are encountered in many applications. However, the sample size required for the left-truncated normal distribution has not been investigated, because the distribution of the sample mean from the left-truncated normal distribution is complex and difficult to obtain. This paper compares an ad hoc approach to two newly proposed methods based on the Central Limit Theorem and on a high degree saddlepoint approximation for calculating the required sample size with the prespecified power. As shown by use of simulations and an example of health insurance cost in China, the ad hoc approach underestimates the sample size required to achieve prespecified power. The method based on the high degree saddlepoint approximation provides valid sample size and power calculations, and it performs better than the Central Limit Theorem. When the sample size is not too small, the Central Limit Theorem also provides a valid, but relatively simple tool to approximate that sample size.  相似文献   

17.
Classical saddlepoint methods, which assume that the cumulant generating function is known, result in an approximation to the distribution that achieves an error of order O(n?1). The authors give a general theorem to address the accuracy of saddlepoint approximations in which the cumulant generating function has been estimated or approximated. In practice, the resulting saddlepoint approximations are typically of the order O(n?1/2). The authors give simulation results for small sample examples to compare estimated saddlepoint approximations.  相似文献   

18.
Measures of the spread of data for random sums arise frequently in many problems and have a wide range of applications in real life, such as in the insurance field (e.g., the total claim size in a portfolio). The exact distribution of random sums is extremely difficult to determine, and normal approximation usually performs very badly for this complex distributions. A better method of approximating a random-sum distribution involves the use of saddlepoint approximations.

Saddlepoint approximations are powerful tools for providing accurate expressions for distribution functions that are not known in closed form. This method not only yields an accurate approximation near the center of the distribution but also controls the relative error in the far tail of the distribution.

In this article, we discuss approximations to the unknown complex random-sum Poisson–Erlang random variable, which has a continuous distribution, and the random-sum Poisson-negative binomial random variable, which has a discrete distribution. We show that the saddlepoint approximation method is not only quick, dependable, stable, and accurate enough for general statistical inference but is also applicable without deep knowledge of probability theory. Numerical examples of application of the saddlepoint approximation method to continuous and discrete random-sum Poisson distributions are presented.  相似文献   


19.
A conditional saddlepoint approximation was provided by Gatto and Jammalamadaka (1999) for computing the distribution function of many test statistics based on dependent quantities like multinomial frequencies, spacing frequencies, etc. The considerable complexity of the formulas involved can be bypassed by symbolic computation. This article illustrates the effectiveness of symbolic computation to evaluate the saddlepoint approximation for the likelihood ratio, the exponential score, and the Wald-Wolfowitz test statistics. The case of composite hypotheses is also discussed.  相似文献   

20.
In this note we define a composite quantile function estimator in order to improve the accuracy of the classical bootstrap procedure in small sample setting. The composite quantile function estimator employs a parametric model for modelling the tails of the distribution and uses the simple linear interpolation quantile function estimator to estimate quantiles lying between 1/(n+1) and n/(n+1). The method is easily programmed using standard software packages and has general applicability. It is shown that the composite quantile function estimator improves the bootstrap percentile interval coverage for a variety of statistics and is robust to misspecification of the parametric component. Moreover, it is also shown that the composite quantile function based approach surprisingly outperforms the parametric bootstrap for a variety of small sample situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号