首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a positive integer k, a total {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0,1,2,…,k} such that for any vertex vV(G), the condition ∑ uN(v) f(u)≥k is fulfilled, where N(v) is the open neighborhood of v. A set {f 1,f 2,…,f d } of total {k}-dominating functions on G with the property that ?i=1dfi(v) £ ksum_{i=1}^{d}f_{i}(v)le k for each vV(G), is called a total {k}-dominating family (of functions) on G. The maximum number of functions in a total {k}-dominating family on G is the total {k}-domatic number of G, denoted by dt{k}(G)d_{t}^{{k}}(G). Note that dt{1}(G)d_{t}^{{1}}(G) is the classic total domatic number d t (G). In this paper we initiate the study of the total {k}-domatic number in graphs and we present some bounds for dt{k}(G)d_{t}^{{k}}(G). Many of the known bounds of d t (G) are immediate consequences of our results.  相似文献   

2.
3.
4.
The Roman game domination number of an undirected graph G is defined by the following game. Players \(\mathcal {A}\) and \(\mathcal {D}\) orient the edges of the graph G alternately, with \(\mathcal {D}\) playing first, until all edges are oriented. Player \(\mathcal {D}\) (frequently called Dominator) tries to minimize the Roman domination number of the resulting digraph, while player \(\mathcal {A}\) (Avoider) tries to maximize it. This game gives a unique number depending only on G, if we suppose that both \(\mathcal {A}\) and \(\mathcal {D}\) play according to their optimal strategies. This number is called the Roman game domination number of G and is denoted by \(\gamma _{Rg}(G)\). In this paper we initiate the study of the Roman game domination number of a graph and we establish some bounds on \(\gamma _{Rg}(G)\). We also determine the Roman game domination number for some classes of graphs.  相似文献   

5.
6.
In this paper, we are interested in computing the number of edge colourings and total colourings of a connected graph. We prove that the maximum number of k-edge-colourings of a connected k-regular graph on n vertices is k?((k?1)!) n/2. Our proof is constructive and leads to a branching algorithm enumerating all the k-edge-colourings of a connected k-regular graph in time O ?(((k?1)!) n/2) and polynomial space. In particular, we obtain a algorithm to enumerate all the 3-edge-colourings of a connected cubic graph in time O ?(2 n/2)=O ?(1.4143 n ) and polynomial space. This improves the running time of O ?(1.5423 n ) of the algorithm due to Golovach et al. (Proceedings of WG 2010, pp. 39–50, 2010). We also show that the number of 4-total-colourings of a connected cubic graph is at most 3?23n/2. Again, our proof yields a branching algorithm to enumerate all the 4-total-colourings of a connected cubic graph.  相似文献   

7.
Graph coloring has interesting real-life applications in optimization, computer science and network design, such as file transferring in a computer network, computation of Hessians matrix and so on. In this paper, we consider one important coloring, linear arboricity, which is an improper edge coloring. Moreover, we study linear arboricity on planar graphs with maximum degree \(\varDelta \ge 7\) . We have proved that the linear arboricity of \(G\) is \(\lceil \frac{\varDelta }{2}\rceil \) , if for each vertex \(v\in V(G)\) , there are two integers \(i_v,j_v\in \{3,4,5,6,7,8\}\) such that any two cycles of length \(i_v\) and \(j_v\) , which contain \(v\) , are not adjacent. Clearly, if \(i_v=i, j_v=j\) for each vertex \(v\in V(G)\) , then we can easily get one corollary: for two fixed integers \(i,j\in \{3,4,5,6,7,8\}\) , if there is no adjacent cycles with length \(i\) and \(j\) in \(G\) , then the linear arboricity of \(G\) is \(\lceil \frac{\varDelta }{2}\rceil \) .  相似文献   

8.
Motivated by the connection with the genus of unoriented alternating links, Jin et al. (Acta Math Appl Sin Engl Ser, 2015) introduced the number of maximum state circles of a plane graph G, denoted by \(s_{\max }(G)\), and proved that \(s_{\max }(G)=\max \{e(H)+2c(H)-v(H)|\) H is a spanning subgraph of \(G\}\), where e(H), c(H) and v(H) denote the size, the number of connected components and the order of H, respectively. In this paper, we show that for any (not necessarily planar) graph G, \(s_{\max }(G)\) can be achieved by the spanning subgraph H of G whose each connected component is a maximal subgraph of G with two edge-disjoint spanning trees. Such a spanning subgraph is proved to be unique and we present a polynomial-time algorithm to find such a spanning subgraph for any graph G.  相似文献   

9.
An oriented graph \(G^\sigma \) is a digraph without loops or multiple arcs whose underlying graph is G. Let \(S\left( G^\sigma \right) \) be the skew-adjacency matrix of \(G^\sigma \) and \(\alpha (G)\) be the independence number of G. The rank of \(S(G^\sigma )\) is called the skew-rank of \(G^\sigma \), denoted by \(sr(G^\sigma )\). Wong et al. (Eur J Comb 54:76–86, 2016) studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that \(sr(G^\sigma )+2\alpha (G)\geqslant 2|V_G|-2d(G)\), where \(|V_G|\) is the order of G and d(G) is the dimension of cycle space of G. We also obtain sharp lower bounds for \(sr(G^\sigma )+\alpha (G),\, sr(G^\sigma )-\alpha (G)\), \(sr(G^\sigma )/\alpha (G)\) and characterize all corresponding extremal graphs.  相似文献   

10.
Let \(G=(V,E)\) be a graph. A set \(S\subseteq V\) is a restrained dominating set if every vertex in \(V-S\) is adjacent to a vertex in \(S\) and to a vertex in \(V-S\). The restrained domination number of \(G\), denoted \(\gamma _{r}(G)\), is the smallest cardinality of a restrained dominating set of \(G\). The best possible upper bound \(q(n,k)\) is established in Joubert (Discrete Appl Math 161:829–837, 2013) on the size \(m(G)\) of a graph \(G\) with a given order \(n \ge 5\) and restrained domination number \(k \in \{3, \ldots , n-2\}\). We extend this result to include the cases \(k=1,2,n\), and characterize graphs \(G\) of order \(n \ge 1\) and restrained domination number \(k \in \{1,\dots , n-2,n\}\) for which \(m(G)=q(n,k)\).  相似文献   

11.
Let \(G=(V,E)\) be a graph. A set \(S\subseteq V\) is a restrained dominating set if every vertex in \(V-S\) is adjacent to a vertex in \(S\) and to a vertex in \(V-S\). The restrained domination number of \(G\), denoted \(\gamma _{r}(G)\), is the smallest cardinality of a restrained dominating set of \(G\). Consider a bipartite graph \(G\) of order \(n\ge 4,\) and let \(k\in \{2,3,...,n-2\}.\) In this paper we will show that if \(\gamma _{r}(G)=k\), then \(m\le ((n-k)(n-k+6)+4k-8)/4\). We will also show that this bound is best possible.  相似文献   

12.
Let G=(V,E) be a graph. A set of vertices S?V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of $V-\nobreak S$ is adjacent to a vertex in V?S. The total restrained domination number of G, denoted by γ tr (G), is the smallest cardinality of a total restrained dominating set of G. A support vertex of a graph is a vertex of degree at least two which is adjacent to a leaf. We show that $\gamma_{\mathit{tr}}(T)\leq\lfloor\frac{n+2s+\ell-1}{2}\rfloor$ where T is a tree of order n≥3, and s and ? are, respectively, the number of support vertices and leaves of T. We also constructively characterize the trees attaining the aforementioned bound.  相似文献   

13.
For a positive integer \(k\ge 2\), the radio k-coloring problem is an assignment L of non-negative integers (colors) to the vertices of a finite simple graph G satisfying the condition \(|L(u)-L(v)| \ge k+1-d(u,v)\), for any two distinct vertices u, v of G and d(uv) being distance between u, v. The span of L is the largest integer assigned by L, while 0 is taken as the smallest color. An \(rc_k\)-coloring on G is a radio k-coloring on G of minimum span which is referred as the radio k-chromatic number of G and denoted by \(rc_k(G)\). An integer h, \(0<h<rc_k(G)\), is a hole in a \(rc_k\)-coloring on G if h is not assigned by it. In this paper, we construct a larger graph from a graph of a certain class by using a combinatorial property associated with \((k-1)\) consecutive holes in any \(rc_k\)-coloring of a graph. Exploiting the same property, we introduce a new graph parameter, referred as \((k-1)\)-hole index of G and denoted by \(\rho _k(G)\). We also explore several properties of \(\rho _k(G)\) including its upper bound and relation with the path covering number of the complement \(G^c\).  相似文献   

14.
Let k be a positive integer and let G be a graph with vertex set V(G). The total {k}-dominating function (T{k}DF) of a graph G is a function f from V(G) to the set {0,1,2,??,k}, such that for each vertex v??V(G), the sum of the values of all its neighbors assigned by f is at least k. A set {f 1,f 2,??,f d } of pairwise different T{k}DFs of G with the property that $\sum_{i=1}^{d}f_{i}(v)\leq k$ for each v??V(G), is called a total {k}-dominating family (T{k}D family) of G. The total {k}-domatic number of a graph G, denoted by $d_{t}^{\{k\}}(G)$ , is the maximum number of functions in a T{k}D family. In this paper, we determine the exact values of the total {k}-domatic numbers of wheels and complete graphs, which answers an open problem of Sheikholeslami and Volkmann (J. Comb. Optim., 2010) and completes a result in the same paper.  相似文献   

15.
In this paper we continue the investigation of total domination in Cartesian products of graphs first studied in (Henning, M.A., Rall, D.F. in Graphs Comb. 21:63–69, 2005). A set S of vertices in a graph G is a total dominating set of G if every vertex in G is adjacent to some vertex in S. The maximum cardinality of a minimal total dominating set of G is the upper total domination number of G, denoted by Γ t (G). We prove that the product of the upper total domination numbers of any graphs G and H without isolated vertices is at most twice the upper total domination number of their Cartesian product; that is, Γ t (G)Γ t (H)≤2Γ t (G □ H). Research of M.A. Henning supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

16.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdgt(G)\mathrm {sd}_{\gamma_{t}}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sdgt(G) £ gt(G)+1\mathrm {sd}_{\gamma_{t}}(G)\leq\gamma_{t}(G)+1 for some classes of graphs.  相似文献   

17.
Journal of Combinatorial Optimization - We study undirected multiple graphs of any natural multiplicity $$k&gt;1$$ . There are edges of three types: ordinary edges, multiple edges and...  相似文献   

18.
Nicos Christofides 《Omega》1973,1(6):719-732
For a given graph (network) having costs [cij] associated with its links, the present paper examines the problem of finding a cycle which traverses every link of the graph at least once, and which incurs the minimum cost of traversal. This problem (called thegraph traversal problem, or theChinese postman problem [9]) can be formulated in ways analogous to those used for the well-known travelling salesman problem, and using this apparent similarity, Bellman and Cooke [1] have produced a dynamic programming formulation. This method of solution of the graph traversal problem requires computational times which increase exponentially with the number of links in the graph. Approximately the same rate of increase of computational effort with problem size would result by any other method adapting a travelling salesman algorithm to the present problem.This paper describes an efficient algorithm for the optimal solution of the graph traversal problem based on the matching method of Edmonds [5, 6]. The computational time requirements of this algorithm increase as a low order (2 or 3) power of the number of links in the graph. Computational results are given for graphs of up to 50 vertices and 125 links.The paper then discusses a generalised version of the graph traversal problem, where not one but a number of cycles are required to traverse the graph. In this case each link has (in addition to its cost) a quantity qij associated with it, and the sum of the quantities of the links in any one cycle must be less than a given amount representing the cycle capacity. A heuristic algorithm for the solution of this problem is given. The algorithm is based on the optimal algorithm for the single-cycle graph traversal problem and is shown to produce near-optimal results.There is a large number of possible applications where graph traversal problems arise. These applications include: the spraying of roads with salt-grit to prevent ice formation, the inspection of electric power lines, gas, or oil pipelines for faults, the delivery of letter post, etc.  相似文献   

19.
This paper examines the capture time of a planar graph in a variant of the pursuit-evasion games, called cops and robbers game. Since any planar graph is 3-cop-win, we study the capture time of a planar graph G of n vertices using three cops, which is denoted by \(capt_3(G)\). We present a new capture strategy and show that \(capt_3(G) \le 2n\). This is the first result on \(capt_3(G)\).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号