首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A list assignment of a graph G is a function L that assigns a list L(v) of colors to each vertex \(v\in V(G)\). An \((L,d)^*\)-coloring is a mapping \(\pi \) that assigns a color \(\pi (v)\in L(v)\) to each vertex \(v\in V(G)\) so that at most d neighbors of v receive color \(\pi (v)\). A graph G is said to be \((k,d)^*\)-choosable if it admits an \((L,d)^*\)-coloring for every list assignment L with \(|L(v)|\ge k\) for all \(v\in V(G)\). In this paper, we prove that every planar graph with neither adjacent triangles nor 6-cycles is \((3,1)^*\)-choosable. This is a partial answer to a question of Xu and Zhang (Discret Appl Math 155:74–78, 2007) that every planar graph without adjacent triangles is \((3,1)^*\)-choosable. Also, this improves a result in Lih et al. (Appl Math Lett 14:269–273, 2001) which says that every planar graph without 4- and 6-cycles is \((3,1)^*\)-choosable.  相似文献   

2.
Given a directed simple graph \(G=(V,E)\) and a cost function \(c:E \rightarrow R_+\), the power of a vertex \(u\) in a directed spanning subgraph \(H\) is given by \(p_H(u) = \max _{uv \in E(H)} c(uv)\), and corresponds to the energy consumption required for wireless node \(u\) to transmit to all nodes \(v\) with \(uv \in E(H)\). The power of \(H\) is given by \(p(H) = \sum _{u \in V} p_H(u)\). Power Assignment seeks to minimize \(p(H)\) while \(H\) satisfies some connectivity constraint. In this paper, we assume \(E\) is bidirected (for every directed edge \(e \in E\), the opposite edge exists and has the same cost), while \(H\) is required to be strongly connected. Moreover, we assume \(c:E \rightarrow \{A,B\}\), where \(0 \le A < B\). We improve the best known approximation ratio from 1.75 (Chen et al. IEEE GLOBECOM 2005) to \(\pi ^2/6 - 1/36 + \epsilon \le 1.61\) using an adaptation of the algorithm developed by Khuller et al. [SIAM J Comput 24(4):859–872 1995, Discr Appl Math 69(3):281–289 1996] for (unweighted) Minimum Strongly Connected Subgraph.  相似文献   

3.
Let \(G=(V,\, E)\) be a given directed graph in which every edge e is associated with two nonnegative costs: a weight w(e) and a length l(e). For a pair of specified distinct vertices \(s,\, t\in V\), the k-(edge) disjoint constrained shortest path (kCSP) problem is to compute k (edge) disjoint paths between s and t, such that the total length of the paths is minimized and the weight is bounded by a given weight budget \(W\in \mathbb {R}_{0}^{+}\). The problem is known to be \({\mathcal {NP}}\)-hard, even when \(k=1\) (Garey and Johnson in Computers and intractability, 1979). Approximation algorithms with bifactor ratio \(\left( 1\,+\,\frac{1}{r},\, r\left( 1\,+\,\frac{2(\log r\,+\,1)}{r}\right) (1\,+\,\epsilon )\right) \) and \((1\,+\,\frac{1}{r},\,1\,+\,r)\) have been developed for \(k=2\) in Orda and Sprintson (IEEE INFOCOM, pp. 727–738, 2004) and Chao and Hong (IEICE Trans Inf Syst 90(2):465–472, 2007), respectively. For general k, an approximation algorithm with ratio \((1,\, O(\ln n))\) has been developed for a weaker version of kCSP, the k bi-constraint path problem which is to compute k disjoint st-paths satisfying a given length constraint and a weight constraint simultaneously (Guo et al. in COCOON, pp. 325–336, 2013). This paper first gives an approximation algorithm with bifactor ratio \((2,\,2)\) for kCSP using the LP-rounding technique. The algorithm is then improved by adopting a more sophisticated method to round edges. It is shown that for any solution output by the improved algorithm, there exists a real number \(0\le \alpha \le 2\) such that the weight and the length of the solution are bounded by \(\alpha \) times and \(2-\alpha \) times of that of an optimum solution, respectively. The key observation of the ratio proof is to show that the fractional edges, in a basic solution against the proposed linear relaxation of kCSP, exactly compose a graph in which the degree of every vertex is exactly two. At last, by a novel enhancement of the technique in Guo et al. (COCOON, pp. 325–336, 2013), the approximation ratio is further improved to \((1,\,\ln n)\).  相似文献   

4.
In this paper we give improved approximation algorithms for some network design problems. In the bounded-diameter or shallow-light \(k\)-Steiner tree problem (SL\(k\)ST), we are given an undirected graph \(G=(V,E)\) with terminals \(T\subseteq V\) containing a root \(r\in T\), a cost function \(c:E\rightarrow \mathbb {R}^+\), a length function \(\ell :E\rightarrow \mathbb {R}^+\), a bound \(L>0\) and an integer \(k\ge 1\). The goal is to find a minimum \(c\)-cost \(r\)-rooted Steiner tree containing at least \(k\) terminals whose diameter under \(\ell \) metric is at most \(L\). The input to the buy-at-bulk \(k\)-Steiner tree problem (BB\(k\)ST) is similar: graph \(G=(V,E)\), terminals \(T\subseteq V\) containing a root \(r\in T\), cost and length functions \(c,\ell :E\rightarrow \mathbb {R}^+\), and an integer \(k\ge 1\). The goal is to find a minimum total cost \(r\)-rooted Steiner tree \(H\) containing at least \(k\) terminals, where the cost of each edge \(e\) is \(c(e)+\ell (e)\cdot f(e)\) where \(f(e)\) denotes the number of terminals whose path to root in \(H\) contains edge \(e\). We present a bicriteria \((O(\log ^2 n),O(\log n))\)-approximation for SL\(k\)ST: the algorithm finds a \(k\)-Steiner tree with cost at most \(O(\log ^2 n\cdot \text{ opt }^*)\) where \(\text{ opt }^*\) is the cost of an LP relaxation of the problem and diameter at most \(O(L\cdot \log n)\). This improves on the algorithm of Hajiaghayi et al. (2009) (APPROX’06/Algorithmica’09) which had ratio \((O(\log ^4 n), O(\log ^2 n))\). Using this, we obtain an \(O(\log ^3 n)\)-approximation for BB\(k\)ST, which improves upon the \(O(\log ^4 n)\)-approximation of Hajiaghayi et al. (2009). We also consider the problem of finding a minimum cost \(2\)-edge-connected subgraph with at least \(k\) vertices, which is introduced as the \((k,2)\)-subgraph problem in Lau et al. (2009) (STOC’07/SICOMP09). This generalizes some well-studied classical problems such as the \(k\)-MST and the minimum cost \(2\)-edge-connected subgraph problems. We give an \(O(\log n)\)-approximation algorithm for this problem which improves upon the \(O(\log ^2 n)\)-approximation algorithm of Lau et al. (2009).  相似文献   

5.
Let \(k\ge 2, p\ge 1, q\ge 0\) be integers. We prove that every \((4kp-2p+2q)\)-connected graph contains p spanning subgraphs \(G_i\) for \(1\le i\le p\) and q spanning trees such that all \(p+q\) subgraphs are pairwise edge-disjoint and such that each \(G_i\) is k-edge-connected, essentially \((2k-1)\)-edge-connected, and \(G_i -v\) is \((k-1)\)-edge-connected for all \(v\in V(G)\). This extends the well-known result of Nash-Williams and Tutte on packing spanning trees, a theorem that every 6p-connected graph contains p pairwise edge-disjoint spanning 2-connected subgraphs, and a theorem that every \((6p+2q)\)-connected graph contains p spanning 2-connected subgraphs and q spanning trees, which are all pairwise edge-disjoint. As an application, we improve a result on k-arc-connected orientations.  相似文献   

6.
In this note, we consider a discrete fractional programming in light of a decision problem where limited number of indivisible resources are allocated to several heterogeneous projects to maximize the ratio of total profit to total cost. For each project, both profit and cost are solely determined by the amount of resources allocated to it. Although the problem can be reformulated as a linear program with \(O(m^2 n)\) variables and \(O(m^2 n^2)\) constraints, we further show that it can be efficiently solved by induction in \(O(m^3 n^2 \log mn)\) time. In application, this method leads to an \(O(m^3 n^2 \log mn)\) algorithm for assortment optimization problem under nested logit model with cardinality constraints (Feldman and Topaloglu, Oper Res 63: 812–822, 2015).  相似文献   

7.
The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. (Algorithmica 58:790–810 2010) introduce a branch-decomposition based algorithm design technique for NP-hard problems in planar graphs and give an algorithm (DPBF algorithm) which solves the planar CDS problem in \(O(2^{9.822\sqrt{n}}n+n^3)\) time and \(O(2^{8.11\sqrt{n}}n+n^3)\) time, with a conventional method and fast matrix multiplication in the dynamic programming step of the algorithm, respectively. We show that DPBF algorithm solves the planar CDS problem in \(O(2^{9.8\sqrt{n}}n+n^3)\) time with a conventional method and in \(O(2^{8.08\sqrt{n}}n+n^3)\) time with a fast matrix multiplication. For a graph \(G\), let \({\hbox {bw}}(G)\) be the branchwidth of \(G\) and \(\gamma _c(G)\) be the connected dominating number of \(G\). We prove \({\hbox {bw}}(G)\le 2\sqrt{10\gamma _c(G)}+32\). From this result, the planar CDS problem admits an \(O(2^{23.54\sqrt{\gamma _c(G)}}\gamma _c(G)+n^3)\) time fixed-parameter algorithm. We report computational study results on the practical performance of DPBF algorithm, which show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical analysis. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space.  相似文献   

8.
An oriented graph \(G^\sigma \) is a digraph without loops or multiple arcs whose underlying graph is G. Let \(S\left( G^\sigma \right) \) be the skew-adjacency matrix of \(G^\sigma \) and \(\alpha (G)\) be the independence number of G. The rank of \(S(G^\sigma )\) is called the skew-rank of \(G^\sigma \), denoted by \(sr(G^\sigma )\). Wong et al. (Eur J Comb 54:76–86, 2016) studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that \(sr(G^\sigma )+2\alpha (G)\geqslant 2|V_G|-2d(G)\), where \(|V_G|\) is the order of G and d(G) is the dimension of cycle space of G. We also obtain sharp lower bounds for \(sr(G^\sigma )+\alpha (G),\, sr(G^\sigma )-\alpha (G)\), \(sr(G^\sigma )/\alpha (G)\) and characterize all corresponding extremal graphs.  相似文献   

9.
The status of a vertex v in a connected graph G is the sum of the distances between v and all the other vertices of G. The subgraph induced by the vertices of minimum (maximum) status in G is called median (anti-median) of G. Let \(H=(G_1,G_2,r)\) denote a graph with \(G_1\) as the median and \(G_2\) as the anti-median of H, \(d(G_1,G_2)=r\) and both \(G_1\) and \(G_2\) are convex subgraphs of H. It is known that \((G_1,G_2,r)\) exists for every \(G_1\), \(G_2\) with \(r \ge \left\lfloor diam(G_1)/2\right\rfloor +\left\lfloor diam(G_2)/2\right\rfloor +2\). In this paper we show the existence of \((G_1,G_2,r)\) for every \(G_1\), \(G_2\) and \(r \ge 1\). We also obtain a sharp upper bound for the maximum status difference in a graph G.  相似文献   

10.
The well-known \(O(n^2)\) minmax cost algorithm of Lawler (Manag Sci 19(5):544–546, 1973) was developed to minimize the maximum cost of jobs processed by a single machine under precedence constraints. We first develop a fast updating algorithm to obtain optimal solutions for two neighboring instances. This method will be used throughout this article. Then we consider job cost functions that depend on the completion time and on one or more additional numerical parameters. The parameters are uncertain and take values from given intervals. Under the uncertainty, we apply the minmax regret criterion for choosing a solution. We generalize results by Brauner et al. (J Sched, 2015) for decomposable cost functions with deterministic processing times and a single uncertain parameter to general cost functions. We describe different conditions, under which minmax regret solutions can be obtained with the time complexity \(O(n^3)\) or \(O(n^2)\). Then the updating algorithm is applied to the lateness model by Kasperski (Oper Res Lett 33:431–436, 2005) where both the processing time and the due date of each job are uncertain. The original \(O(n^4)\) running time is improved to the time complexity \(O(n^3)\). Finally, we extend the cost functions with a single uncertain parameter to those with a vector of additional uncertain parameters, improve one of the complexity results by Volgenant and Duin (Comput Oper Res 37:909–915, 2010) and solve some new problems.  相似文献   

11.
Let \(G=(V,E)\) be a graph. A set \(S\subseteq V\) is a restrained dominating set if every vertex in \(V-S\) is adjacent to a vertex in \(S\) and to a vertex in \(V-S\). The restrained domination number of \(G\), denoted \(\gamma _{r}(G)\), is the smallest cardinality of a restrained dominating set of \(G\). The best possible upper bound \(q(n,k)\) is established in Joubert (Discrete Appl Math 161:829–837, 2013) on the size \(m(G)\) of a graph \(G\) with a given order \(n \ge 5\) and restrained domination number \(k \in \{3, \ldots , n-2\}\). We extend this result to include the cases \(k=1,2,n\), and characterize graphs \(G\) of order \(n \ge 1\) and restrained domination number \(k \in \{1,\dots , n-2,n\}\) for which \(m(G)=q(n,k)\).  相似文献   

12.
A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S is adjacent from at least one vertex in S. The domination number of D, denoted by \(\gamma (D)\), is the minimum cardinality of a dominating set of D. The Slater number \(s\ell (D)\) is the smallest integer t such that t added to the sum of the first t terms of the non-increasing out-degree sequence of D is at least as large as the order of D. For any digraph D of order n with maximum out-degree \(\Delta ^+\), it is known that \(\gamma (D)\ge \lceil n/(\Delta ^++1)\rceil \). We show that \(\gamma (D)\ge s\ell (D)\ge \lceil n/(\Delta ^++1)\rceil \) and the difference between \(s\ell (D)\) and \(\lceil n/(\Delta ^++1)\rceil \) can be arbitrarily large. In particular, for an oriented tree T of order n with \(n_0\) vertices of out-degree 0, we show that \((n-n_0+1)/2\le s\ell (T)\le \gamma (T)\le 2s\ell (T)-1\) and moreover, each value between the lower bound \(s\ell (T)\) and the upper bound \(2s\ell (T)-1\) is attainable by \(\gamma (T)\) for some oriented trees. Further, we characterize the oriented trees T for which \(s\ell (T)=(n-n_0+1)/2\) hold and show that the difference between \(s\ell (T)\) and \((n-n_0+1)/2\) can be arbitrarily large. Some other elementary properties involving the Slater number are also presented.  相似文献   

13.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

14.
We continue the study of the performance of mildly greedy players in cut games initiated by Christodoulou et al. (Theoret Comput Sci 438:13–27, 2012), where a mildly greedy player is a selfish agent who is willing to deviate from a certain strategy profile only if her payoff improves by a factor of more than \(1+\epsilon \), for some given \(\epsilon \ge 0\). Hence, in presence of mildly greedy players, the classical concepts of pure Nash equilibria and best-responses generalize to those of \((1+\epsilon )\)-approximate pure Nash equilibria and \((1+\epsilon )\)-approximate best-responses, respectively. We first show that the \(\epsilon \)-approximate price of anarchy, that is the price of anarchy of \((1+\epsilon )\)-approximate pure Nash equilibria, is at least \(\frac{1}{2+\epsilon }\) and that this bound is tight for any \(\epsilon \ge 0\). Then, we evaluate the approximation ratio of the solutions achieved after a \((1+\epsilon )\)-approximate one-round walk starting from any initial strategy profile, where a \((1+\epsilon )\)-approximate one-round walk is a sequence of \((1+\epsilon )\)-approximate best-responses, one for each player. We improve the currently known lower bound on this ratio from \(\min \left\{ \frac{1}{4+2\epsilon },\frac{\epsilon }{4+2\epsilon }\right\} \) up to \(\min \left\{ \frac{1}{2+\epsilon },\frac{2\epsilon }{(1+\epsilon )(2+\epsilon )}\right\} \) and show that this is again tight for any \(\epsilon \ge 0\). An interesting and quite surprising consequence of our results is that the worst-case performance guarantee of the very simple solutions generated after a \((1+\epsilon )\)-approximate one-round walk is the same as that of \((1+\epsilon )\)-approximate pure Nash equilibria when \(\epsilon \ge 1\) and of that of subgame perfect equilibria (i.e., Nash equilibria for greedy players with farsighted, rather than myopic, rationality) when \(\epsilon =1\).  相似文献   

15.
Neighbourly set of a graph is a subset of edges which either share an end point or are joined by an edge of that graph. The maximum cardinality neighbourly set problem is known to be NP-complete for general graphs. Mahdian (Discret Appl Math 118:239–248, 2002) proved that it is in polynomial time for quadrilateral-free graphs and proposed an \(O(n^{11})\) algorithm for the same, here n is the number of vertices in the graph, (along with a note that by a straightforward but lengthy argument it can be proved to be solvable in \(O(n^5)\) running time). In this paper we propose an \(O(n^2)\) time algorithm for finding a maximum cardinality neighbourly set in a quadrilateral-free graph.  相似文献   

16.
To save energy and alleviate interference in a wireless sensor network, connected dominating set (CDS) has been proposed as the virtual backbone. Since nodes may fail due to accidental damage or energy depletion, it is desirable to construct a fault tolerant CDS, which can be modeled as a \(k\)-connected \(m\)-fold dominating set \(((k,m)\)-CDS for short): a subset of nodes \(C\subseteq V(G)\) is a \((k,m)\)-CDS of \(G\) if every node in \(V(G)\setminus C\) is adjacent with at least \(m\) nodes in \(C\) and the subgraph of \(G\) induced by \(C\) is \(k\)-connected.In this paper, we present an approximation algorithm for the minimum \((2,m)\)-CDS problem with \(m\ge 2\). Based on a \((1,m)\)-CDS, the algorithm greedily merges blocks until the connectivity is raised to two. The most difficult problem in the analysis is that the potential function used in the greedy algorithm is not submodular. By proving that an optimal solution has a specific decomposition, we managed to prove that the approximation ratio is \(\alpha +2(1+\ln \alpha )\), where \(\alpha \) is the approximation ratio for the minimum \((1,m)\)-CDS problem. This improves on previous approximation ratios for the minimum \((2,m)\)-CDS problem, both in general graphs and in unit disk graphs.  相似文献   

17.
In a graph \(G=(V,E)\), a set \(D \subseteq V\) is said to be a dominating set of G if for every vertex \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\). A secure dominating set of the graph G is a dominating set D of G such that for every \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\) and \((D{\setminus }\{v\})\cup \{u\}\) is a dominating set of G. Given a graph G and a positive integer k, the secure domination problem is to decide whether G has a secure dominating set of cardinality at most k. The secure domination problem has been shown to be NP-complete for chordal graphs via split graphs and for bipartite graphs. In Liu et al. (in: Proceedings of 27th workshop on combinatorial mathematics and computation theory, 2010), it is asked to find a polynomial time algorithm for computing a minimum secure dominating set in a block graph. In this paper, we answer this by presenting a linear time algorithm to compute a minimum secure dominating set in block graphs. We then strengthen the known NP-completeness of the secure domination problem by showing that the secure domination problem is NP-complete for undirected path graphs and chordal bipartite graphs.  相似文献   

18.
Let \(G=(V, E)\) be a graph. Denote \(d_G(u, v)\) the distance between two vertices \(u\) and \(v\) in \(G\). An \(L(2, 1)\)-labeling of \(G\) is a function \(f: V \rightarrow \{0,1,\cdots \}\) such that for any two vertices \(u\) and \(v\), \(|f(u)-f(v)| \ge 2\) if \(d_G(u, v) = 1\) and \(|f(u)-f(v)| \ge 1\) if \(d_G(u, v) = 2\). The span of \(f\) is the difference between the largest and the smallest number in \(f(V)\). The \(\lambda \)-number of \(G\), denoted \(\lambda (G)\), is the minimum span over all \(L(2,1 )\)-labelings of \(G\). In this article, we confirm Conjecture 6.1 stated in X. Li et al. (J Comb Optim 25:716–736, 2013) in the case when (i) \(\ell \) is even, or (ii) \(\ell \ge 5\) is odd and \(0 \le r \le 8\).  相似文献   

19.
A cyclic edge-cut of a connected graph \(G\) is an edge set, the removal of which separates two cycles. If \(G\) has a cyclic edge-cut, then it is called cyclically separable. For a cyclically separable graph \(G\), the cyclic edge connectivity of a graph \(G\), denoted by \(\lambda _c(G)\), is the minimum cardinality over all cyclic edge cuts. Let \(X\) be a non-empty proper subset of \(V(G)\). If \([X,\overline{X}]=\{xy\in E(G)\ |\ x\in X, y\in \overline{X}\}\) is a minimum cyclic edge cut of \(G\), then \(X\) is called a \(\lambda _c\) -fragment of \(G\). A \(\lambda _c\)-fragment with minimum cardinality is called a \(\lambda _c\) -atom. Let \(G\) be a \(k (k\ge 3)\)-regular cyclically separable graph with \(\lambda _c(G)<g(k-2)\), where \(g\) is the girth of \(G\). A combination of the results of Nedela and Skoviera (Math Slovaca 45:481–499, 1995) and Xu and Liu (Australas J Combin 30:41–49, 2004) gives that if \(k\ne 5\) then any two distinct \(\lambda _c\)-atoms of \(G\) are disjoint. The remaining case of \(k=5\) is considered in this paper, and a new proof for Nedela and ?koviera’s result is also given. As a result, we obtain the following result. If \(X\) and \(X'\) are two distinct \(\lambda _c\)-atoms of \(G\) such that \(X\cap X'\ne \emptyset \), then \((k,g)=(5,3)\) and \(G[X]\cong K_4\). As corollaries, several previous results are easily obtained.  相似文献   

20.
Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号