首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S is adjacent from at least one vertex in S. The domination number of D, denoted by \(\gamma (D)\), is the minimum cardinality of a dominating set of D. The Slater number \(s\ell (D)\) is the smallest integer t such that t added to the sum of the first t terms of the non-increasing out-degree sequence of D is at least as large as the order of D. For any digraph D of order n with maximum out-degree \(\Delta ^+\), it is known that \(\gamma (D)\ge \lceil n/(\Delta ^++1)\rceil \). We show that \(\gamma (D)\ge s\ell (D)\ge \lceil n/(\Delta ^++1)\rceil \) and the difference between \(s\ell (D)\) and \(\lceil n/(\Delta ^++1)\rceil \) can be arbitrarily large. In particular, for an oriented tree T of order n with \(n_0\) vertices of out-degree 0, we show that \((n-n_0+1)/2\le s\ell (T)\le \gamma (T)\le 2s\ell (T)-1\) and moreover, each value between the lower bound \(s\ell (T)\) and the upper bound \(2s\ell (T)-1\) is attainable by \(\gamma (T)\) for some oriented trees. Further, we characterize the oriented trees T for which \(s\ell (T)=(n-n_0+1)/2\) hold and show that the difference between \(s\ell (T)\) and \((n-n_0+1)/2\) can be arbitrarily large. Some other elementary properties involving the Slater number are also presented.  相似文献   

2.
A hamiltonian walk of a digraph is a closed spanning directed walk with minimum length in the digraph. The length of a hamiltonian walk in a digraph D is called the hamiltonian number of D, denoted by h(D). In Chang and Tong (J Comb Optim 25:694–701, 2013), Chang and Tong proved that for a strongly connected digraph D of order n, \(n\le h(D)\le \lfloor \frac{(n+1)^2}{4} \rfloor \), and characterized the strongly connected digraphs of order n with hamiltonian number \(\lfloor \frac{(n+1)^2}{4} \rfloor \). In the paper, we characterized the strongly connected digraphs of order n with hamiltonian number \(\lfloor \frac{(n+1)^2}{4} \rfloor -1\) and show that for any triple of integers n, k and t with \(n\ge 5\), \(n\ge k\ge 3\) and \(t\ge 0\), there is a class of nonisomorphic digraphs with order n and hamiltonian number \(n(n-k+1)-t\).  相似文献   

3.
In the p-Cluster Vertex Deletion problem, we are given a graph \(G=(V,E)\) and two parameters k and p, and the goal is to determine if there exists a subset X of at most k vertices such that the removal of X results in a graph consisting of exactly p disjoint maximal cliques. Let \(r=p/k\). In this paper, we design a branching algorithm with time complexity \(O(\alpha ^k+|V||E|)\), where \(\alpha \) depends on r and has a rough upper bound \(\min \{1.618^{1+r},2\}\). With a more precise analysis, we show that \(\alpha =1.28\cdot 3.57^{r}\) for \(r\le 0.219\); \(\alpha =(1-r)^{r-1}r^{-r}\) for \(0.219< r<1/2\); and \(\alpha =2\) for \(r\ge 1/2\), respectively. Our algorithm also works with the same time complexity for the variant that the number of clusters is at most p. Our result improves the previous best time complexity \(O^*(1.84^{p+k})\) and implies that for fixed p the problem can be solved as efficiently as Vertex Cover.  相似文献   

4.
An r-acyclic edge coloring of a graph G is a proper edge coloring such that any cycle C has at least \(\min \{|C|,r\}\) colors. The least number of colors needed for an r-acyclic edge coloring of G is called the r-acyclic edge chromatic number or the r-acyclic chromatic index of G, denoted by \(A'_{r}\left( G\right) \). In this paper, we study the r-acyclic edge chromatic number with \(r\ge 4\) and prove that \(A'_{r}\left( G\right) \le 2\Delta ^{\lfloor \tfrac{r}{2}\rfloor }+O\left( \Delta ^{\tfrac{r+1}{3}}\right) \). We also prove that when r is even, \(A'_{r}\left( G\right) \le \Delta ^{\tfrac{r}{2}}+O\left( \Delta ^{\tfrac{r+1}{3}}\right) \), which is asymptotically optimal. In addition, we investigate how the r-acyclic edge chromatic number performs as the girth increases. It is proved in this paper that for every graph G with girth at least \(2r-1\), \(A'_r\left( G\right) \le \left( 9r-7\right) \Delta +10r-12\) holds. Our approach is based on the entropy compression method.  相似文献   

5.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

6.
An L(2,1)-labeling of a graph \(G\) is an assignment of nonnegative integers to \(V(G)\) such that the difference between labels of adjacent vertices is at least \(2\), and the difference between labels of vertices that are distance two apart is at least 1. The span of an L(2,1)-labeling of a graph \(G\) is the difference between the maximum and minimum integers used by it. The minimum span of an L(2,1)-labeling of \(G\) is denoted by \(\lambda (G)\). This paper focuses on L(2,1)-labelings-number of the edge-multiplicity-paths-replacement \(G(rP_{k})\) of a graph \(G\). In this paper, we obtain that \( r\Delta +1 \le \lambda (G(rP_{5}))\le r\Delta +2\), \(\lambda (G(rP_{k}))= r\Delta +1\) for \(k\ge 6\); and \(\lambda (G(rP_{4}))\le (\Delta +1)r+1\), \(\lambda (G(rP_{3}))\le (\Delta +1)r+\Delta \) for any graph \(G\) with maximum degree \(\Delta \). And the L(2,1)-labelings-numbers of the edge-multiplicity-paths-replacement \(G(rP_{k})\) are completely determined for \(1\le \Delta \le 2\). And we show that the class of graphs \(G(rP_{k})\) with \(k\ge 3 \) satisfies the conjecture: \(\lambda ^{T}_{2}(G)\le \Delta +2\) by Havet and Yu (Technical Report 4650, 2002).  相似文献   

7.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

8.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

9.
A starlike tree is a tree with exactly one vertex of degree greater than two. The spectral radius of a graph G, that is denoted by \(\lambda (G)\), is the largest eigenvalue of G. Let k and \(n_1,\ldots ,n_k\) be some positive integers. Let \(T(n_1,\ldots ,n_k)\) be the tree T (T is a path or a starlike tree) such that T has a vertex v so that \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1-1},\ldots ,P_{n_k-1}\) where every neighbor of v in T has degree one or two. Let \(P=(p_1,\ldots ,p_k)\) and \(Q=(q_1,\ldots ,q_k)\), where \(p_1\ge \cdots \ge p_k\ge 1\) and \(q_1\ge \cdots \ge q_k\ge 1\) are integer. We say P majorizes Q and let \(P\succeq _M Q\), if for every j, \(1\le j\le k\), \(\sum _{i=1}^{j}p_i\ge \sum _{i=1}^{j}q_i\), with equality if \(j=k\). In this paper we show that if P majorizes Q, that is \((p_1,\ldots ,p_k)\succeq _M(q_1,\ldots ,q_k)\), then \(\lambda (T(q_1,\ldots ,q_k))\ge \lambda (T(p_1,\ldots ,p_k))\).  相似文献   

10.
Let \(\chi _2(G)\) and \(\chi _2^l(G)\) be the 2-distance chromatic number and list 2-distance chromatic number of a graph G, respectively. Wegner conjectured that for each planar graph G with maximum degree \(\varDelta \) at least 4, \(\chi _2(G)\le \varDelta +5\) if \(4\le \varDelta \le 7\), and \(\chi _2(G)\le \lfloor \frac{3\varDelta }{2}\rfloor +1\) if \(\varDelta \ge 8\). Let G be a planar graph without 4,5-cycles. We show that if \(\varDelta \ge 26\), then \(\chi _2^l(G)\le \varDelta +3\). There exist planar graphs G with girth \(g(G)=6\) such that \(\chi _2^l(G)=\varDelta +2\) for arbitrarily large \(\varDelta \). In addition, we also discuss the list L(2, 1)-labeling number of G, and prove that \(\lambda _l(G)\le \varDelta +8\) for \(\varDelta \ge 27\).  相似文献   

11.
The status of a vertex v in a connected graph G is the sum of the distances between v and all the other vertices of G. The subgraph induced by the vertices of minimum (maximum) status in G is called median (anti-median) of G. Let \(H=(G_1,G_2,r)\) denote a graph with \(G_1\) as the median and \(G_2\) as the anti-median of H, \(d(G_1,G_2)=r\) and both \(G_1\) and \(G_2\) are convex subgraphs of H. It is known that \((G_1,G_2,r)\) exists for every \(G_1\), \(G_2\) with \(r \ge \left\lfloor diam(G_1)/2\right\rfloor +\left\lfloor diam(G_2)/2\right\rfloor +2\). In this paper we show the existence of \((G_1,G_2,r)\) for every \(G_1\), \(G_2\) and \(r \ge 1\). We also obtain a sharp upper bound for the maximum status difference in a graph G.  相似文献   

12.
Let \(G=(V, E)\) be a simple graph and denote the set of edges incident to a vertex v by E(v). The neighbor sum distinguishing (NSD) total choice number of G, denoted by \(\mathrm{ch}_{\Sigma }^{t}(G)\), is the smallest integer k such that, after assigning each \(z\in V\cup E\) a set L(z) of k real numbers, G has a total coloring \(\phi \) satisfying \(\phi (z)\in L(z)\) for each \(z\in V\cup E\) and \(\sum _{z\in E(u)\cup \{u\}}\phi (z)\ne \sum _{z\in E(v)\cup \{v\}}\phi (z)\) for each \(uv\in E\). In this paper, we propose some reducible configurations of NSD list total coloring for general graphs by applying the Combinatorial Nullstellensatz. As an application, we present that \(\mathrm{ch}^{t}_{\Sigma }(G)\le \Delta (G)+3\) for every subcubic graph G.  相似文献   

13.
A proper total k-coloring \(\phi \) of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\dots , k\}\) such that no adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let \(m_{\phi }(v)\) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if \(m_{\phi }(u)\not =m_{\phi }(v)\) for each edge \(uv\in E(G).\) Let \(\chi _{\Sigma }^t(G)\) be the neighbor sum distinguishing total chromatic number of a graph G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi _{\Sigma }^t(G)\le \Delta (G)+3\). In this paper, we show that if G is a graph with treewidth \(\ell \ge 3\) and \(\Delta (G)\ge 2\ell +3\), then \(\chi _{\Sigma }^t(G)\le \Delta (G)+\ell -1\). This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when \(\ell =3\) and \(\Delta \ge 9\), we show that \(\Delta (G) + 1\le \chi _{\Sigma }^t(G)\le \Delta (G)+2\) and characterize graphs with equalities.  相似文献   

14.
The concept of k-connectivity \(\kappa '_{k}(G)\) of a graph G, introduced by Chartrand in 1984, is a generalization of the cut-version of the classical connectivity. Another generalized connectivity of a graph G, named the generalized k-connectivity \(\kappa _{k}(G)\), mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. In this paper, we get the lower and upper bounds for the difference of these two parameters by showing that for a connected graph G of order n, if \(\kappa '_k(G)\ne n-k+1\) where \(k\ge 3\), then \(0\le \kappa '_k(G)-\kappa _k(G)\le n-k-1\); otherwise, \(-\lfloor \frac{k}{2}\rfloor +1\le \kappa '_k(G)-\kappa _k(G)\le n-k\). Moreover, all of these bounds are sharp. Some specific study is focused for the case \(k=3\). As results, we characterize the graphs with \(\kappa '_3(G)=\kappa _3(G)=t\) for \(t\in \{1, n-3, n-2\}\), and give a necessary condition for \(\kappa '_3(G)=\kappa _3(G)\) by showing that for a connected graph G of order n and size m, if \(\kappa '_3(G)=\kappa _3(G)=t\) where \(1\le t\le n-3\), then \(m\le {n-2\atopwithdelims ()2}+2t\). Moreover, the unique extremal graph is given for the equality to hold.  相似文献   

15.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

16.
A total-[k]-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that \(f(u)\ne f(v)\), where \(uv\in E(G)\). By \(\chi ^{\prime \prime }_{\prod }(G)\), we denote the smallest value k in such a coloring of G. We conjecture that \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a \(K_4\)-minor free graph with \(\Delta (G)\ge 4\), then \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2\).  相似文献   

17.
For a given graph and an integer t, the MinMax 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t. It has been shown that the problem can be solved in polynomial time for \(t<n/4\), where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t. Let \(k=t-n/4\). We show that the problem is polynomial-time solvable when roughly \(k<\sqrt{n/32}\). When \(k\in o(n)\), we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in \(O({2}^{n/r}\cdot n^2)\) time for \(k<n/12\) and in \(O(n^2\cdot 2^{3n/4+k})\) time for \(n/12\le k< n/4\), where \(r=2+\lfloor (n/4-3k-2)/(2k+1) \rfloor \ge 2\).  相似文献   

18.
For a graph G, \(\alpha '(G)\) is the matching number of G. Let \(k\ge 2\) be an integer, \(K_{n}\) be the complete graph of order n. Assume that \(G_{1}, G_{2}, \ldots , G_{k}\) is a k-decomposition of \(K_{n}\). In this paper, we show that (1)
$$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$
(2) If each \(G_{i}\) is non-empty for \(i = 1, \ldots , k\), then for \(n\ge 6k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$
(3) If \(G_{i}\) has no isolated vertices for \(i = 1, \ldots , k\), then for \(n\ge 8k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$
The bounds in (1), (2) and (3) are sharp. (4) When \(k= 2\), we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.
  相似文献   

19.
A partition of the vertex set V(G) of a graph G into \(V(G)=V_1\cup V_2\cup \cdots \cup V_k\) is called a k-strong subcoloring if \(d(x,y)\ne 2\) in G for every \(x,y\in V_i\), \(1\le i \le k\) where d(xy) denotes the length of a shortest x-y path in G. The strong subchromatic number is defined as \(\chi _{sc}(G)=\text {min}\{ k:G \text { admits a }k\)-\(\text {strong subcoloring}\}\). In this paper, we explore the complexity status of the StrongSubcoloring problem: for a given graph G and a positive integer k, StrongSubcoloring is to decide whether G admits a k-strong subcoloring. We prove that StrongSubcoloring is NP-complete for subcubic bipartite graphs and the problem is polynomial time solvable for trees. In addition, we prove the following dichotomy results: (i) for the class of \(K_{1,r}\)-free split graphs, StrongSubcoloring is in P when \(r\le 3\) and NP-complete when \(r>3\) and (ii) for the class of H-free graphs, StrongSubcoloring is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Next, we consider a lower bound on the strong subchromatic number. A strong set is a set S of vertices of a graph G such that for every \(x,y\in S\), \(d(x,y)= 2\) in G and the cardinality of a maximum strong set in G is denoted by \(\alpha _{s}(G)\). Clearly, \(\alpha _{s}(G)\le \chi _{sc}(G)\). We consider the complexity status of the StrongSet problem: given a graph G and a positive integer k, StrongSet asks whether G contains a strong set of cardinality k. We prove that StrongSet is NP-complete for (i) bipartite graphs and (ii) \(K_{1,4}\)-free split graphs, and it is polynomial time solvable for (i) trees and (ii) \(P_4\)-free graphs.  相似文献   

20.
Let \(k\ge 2, p\ge 1, q\ge 0\) be integers. We prove that every \((4kp-2p+2q)\)-connected graph contains p spanning subgraphs \(G_i\) for \(1\le i\le p\) and q spanning trees such that all \(p+q\) subgraphs are pairwise edge-disjoint and such that each \(G_i\) is k-edge-connected, essentially \((2k-1)\)-edge-connected, and \(G_i -v\) is \((k-1)\)-edge-connected for all \(v\in V(G)\). This extends the well-known result of Nash-Williams and Tutte on packing spanning trees, a theorem that every 6p-connected graph contains p pairwise edge-disjoint spanning 2-connected subgraphs, and a theorem that every \((6p+2q)\)-connected graph contains p spanning 2-connected subgraphs and q spanning trees, which are all pairwise edge-disjoint. As an application, we improve a result on k-arc-connected orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号