首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider a graph G. A subset of vertices, F, is called a vertex cover \(P_t\) (\(VCP_t\)) set if every path of order t contains at least one vertex in F. Finding a minimum \(VCP_t\) set in a graph is is NP-hard for any integer \(t\ge 2\) and is called the \(MVCP_3\) problem. In this paper, we study the parameterized algorithms for the \(MVCP_3\) problem when the underlying graph G is parameterized by the treewidth. Given an n-vertex graph together with its tree decomposition of width at most p, we present an algorithm running in time \(4^{p}\cdot n^{O(1)}\) for the \(MVCP_3\) problem. Moreover, we show that for the \(MVCP_3\) problem on planar graphs, there is a subexponential parameterized algorithm running in time \(2^{O(\sqrt{k})}\cdot n^{O(1)}\) where k is the size of the optimal solution.  相似文献   

2.
For a given graph and an integer t, the MinMax 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t. It has been shown that the problem can be solved in polynomial time for \(t<n/4\), where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t. Let \(k=t-n/4\). We show that the problem is polynomial-time solvable when roughly \(k<\sqrt{n/32}\). When \(k\in o(n)\), we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in \(O({2}^{n/r}\cdot n^2)\) time for \(k<n/12\) and in \(O(n^2\cdot 2^{3n/4+k})\) time for \(n/12\le k< n/4\), where \(r=2+\lfloor (n/4-3k-2)/(2k+1) \rfloor \ge 2\).  相似文献   

3.
The directed Steiner tree (DST) NP-hard problem asks, considering a directed weighted graph with n nodes and m arcs, a node r called root and a set of k nodes X called terminals, for a minimum cost directed tree rooted at r spanning X. The best known polynomial approximation ratio for DST is a \(O(k^\varepsilon )\)-approximation greedy algorithm. However, a much faster k-approximation, returning the shortest paths from r to X, is generally used in practice. We give two new algorithms : a fast k-approximation called Greedy\(_\text {FLAC}\) running in \(O(m \log (n)k + \min (m, nk)nk^2)\) and a \(O(\sqrt{k})\)-approximation called Greedy\(_\text {FLAC}^\triangleright \) running in \(O(nm + n^2 \log (n)k +n^2 k^3)\). We provide computational results to show that, Greedy\(_\text {FLAC}\) rivals in practice with the running time of the fast k-approximation and returns solution with smaller cost in practice.  相似文献   

4.
Let \(r\ge 3\) and \(k\ge 2\) be fixed integers, and let H be an r-uniform hypergraph with n vertices and m edges. In 1997, Bollobás and Scott conjectured that H has a vertex-partition into k sets with at most \(m/k^r+o(m)\) edges in each set. So far, this conjecture was confirmed when \(r=3\) or \(m=\Omega (n^{r-1+o(1)})\). In this paper, we show that it holds for \(m=\Omega (n^{r-3+\epsilon })\) for any \(\epsilon >0\).  相似文献   

5.
We consider the facility location problem of locating a set \(X_p\) of p facilities (resources) on a network (or a graph) such that the subnetwork (or subgraph) induced by the selected set \(X_p\) is connected. Two problems on a block graph G are proposed: one problem is to minimizes the sum of its weighted distances from all vertices of G to \(X_p\), another problem is to minimize the maximum distance from each vertex that is not in \(X_p\) to \(X_p\) and, at the same time, to minimize the sum of its distances from all vertices of G to \(X_p\). We prove that the first problem is linearly solvable on block graphs with unit edge length. For the second problem, it is shown that the set of Pareto-optimal solutions of the two criteria has cardinality not greater than n, and can be obtained in \(O(n^2)\) time, where n is the number of vertices of the block graph G.  相似文献   

6.
Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.  相似文献   

7.
An \(m\times n\) matrix \(\mathsf {A}\) with column supports \(\{S_i\}\) is k-separable if the disjunctions \(\bigcup _{i \in \mathcal {K}} S_i\) are all distinct over all sets \(\mathcal {K}\) of cardinality k. While a simple counting bound shows that \(m > k \log _2 n/k\) rows are required for a separable matrix to exist, in fact it is necessary for m to be about a factor of k more than this. In this paper, we consider a weaker definition of ‘almost k-separability’, which requires that the disjunctions are ‘mostly distinct’. We show using a random construction that these matrices exist with \(m = O(k \log n)\) rows, which is optimal for \(k = O(n^{1-\beta })\). Further, by calculating explicit constants, we show how almost separable matrices give new bounds on the rate of nonadaptive group testing.  相似文献   

8.
In the p-Cluster Vertex Deletion problem, we are given a graph \(G=(V,E)\) and two parameters k and p, and the goal is to determine if there exists a subset X of at most k vertices such that the removal of X results in a graph consisting of exactly p disjoint maximal cliques. Let \(r=p/k\). In this paper, we design a branching algorithm with time complexity \(O(\alpha ^k+|V||E|)\), where \(\alpha \) depends on r and has a rough upper bound \(\min \{1.618^{1+r},2\}\). With a more precise analysis, we show that \(\alpha =1.28\cdot 3.57^{r}\) for \(r\le 0.219\); \(\alpha =(1-r)^{r-1}r^{-r}\) for \(0.219< r<1/2\); and \(\alpha =2\) for \(r\ge 1/2\), respectively. Our algorithm also works with the same time complexity for the variant that the number of clusters is at most p. Our result improves the previous best time complexity \(O^*(1.84^{p+k})\) and implies that for fixed p the problem can be solved as efficiently as Vertex Cover.  相似文献   

9.
Neighbourly set of a graph is a subset of edges which either share an end point or are joined by an edge of that graph. The maximum cardinality neighbourly set problem is known to be NP-complete for general graphs. Mahdian (Discret Appl Math 118:239–248, 2002) proved that it is in polynomial time for quadrilateral-free graphs and proposed an \(O(n^{11})\) algorithm for the same, here n is the number of vertices in the graph, (along with a note that by a straightforward but lengthy argument it can be proved to be solvable in \(O(n^5)\) running time). In this paper we propose an \(O(n^2)\) time algorithm for finding a maximum cardinality neighbourly set in a quadrilateral-free graph.  相似文献   

10.
Barrier coverage, as one of the most important applications of wireless sensor network (WSNs), is to provide coverage for the boundary of a target region. We study the barrier coverage problem by using a set of n sensors with adjustable coverage radii deployed along a line interval or circle. Our goal is to determine a range assignment \(\mathbf {R}=({r_{1}},{r_{2}}, \ldots , {r_{n}})\) of sensors such that the line interval or circle is fully covered and its total cost \(C(\mathbf {R})=\sum _{i=1}^n {r_{i}}^\alpha \) is minimized. For the line interval case, we formulate the barrier coverage problem of line-based offsets deployment, and present two approximation algorithms to solve it. One is an approximation algorithm of ratio 4 / 3 runs in \(O(n^{2})\) time, while the other is a fully polynomial time approximation scheme (FPTAS) of computational complexity \(O(\frac{n^{2}}{\epsilon })\). For the circle case, we optimally solve it when \(\alpha = 1\) and present a \(2(\frac{\pi }{2})^\alpha \)-approximation algorithm when \(\alpha > 1\). Besides, we propose an integer linear programming (ILP) to minimize the total cost of the barrier coverage problem such that each point of the line interval is covered by at least k sensors.  相似文献   

11.
A complete graph is the graph in which every two vertices are adjacent. For a graph \(G=(V,E)\), the complete width of G is the minimum k such that there exist k independent sets \(\mathtt {N}_i\subseteq V\), \(1\le i\le k\), such that the graph \(G'\) obtained from G by adding some new edges between certain vertices inside the sets \(\mathtt {N}_i\), \(1\le i\le k\), is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on \(3K_2\)-free bipartite graphs and polynomially solvable on \(2K_2\)-free bipartite graphs and on \((2K_2,C_4)\)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on \(\overline{3K_2}\)-free co-bipartite graphs and polynomially solvable on \(C_4\)-free co-bipartite graphs and on \((2K_2, C_4)\)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most \(2^k\) vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most \(2^k\) vertices. Finally we determine all graphs of small complete width \(k\le 3\).  相似文献   

12.
Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an \(O(mn+n^2 \log n)\) time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in \(O(m+n \log n)\) time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in \(O(m+n \log n)\) time.  相似文献   

13.
Generalizing the concept of tree metric, Hirai (Ann Combinatorics 10:111–128, 2006) introduced the concept of subtree distance. A nonnegative-valued mapping \(d:X\times X \rightarrow \mathbb {R}_+\) is called a subtree distance if there exist a weighted tree T and a family \(\{T_x\mid x \in X\}\) of subtrees of T indexed by the elements in X such that \(d(x,y)=d_T(T_x,T_y)\), where \(d_T(T_x,T_y)\ge 0\) is the distance between \(T_x\) and \(T_y\) in T. Hirai (2006) provided a characterization of subtree distances that corresponds to Buneman’s (J Comb Theory, Series B 17:48–50, 1974) four-point condition for tree metrics. Using this characterization, we can decide whether or not a given mapping is a subtree distance in O\((n^4)\) time. In this paper, we show an O\((n^3)\) time algorithm that finds a representation of a given subtree distance. This results in an O\((n^3)\) time algorithm for deciding whether a given mapping is a subtree distance.  相似文献   

14.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

15.
The status of a vertex v in a connected graph G is the sum of the distances between v and all the other vertices of G. The subgraph induced by the vertices of minimum (maximum) status in G is called median (anti-median) of G. Let \(H=(G_1,G_2,r)\) denote a graph with \(G_1\) as the median and \(G_2\) as the anti-median of H, \(d(G_1,G_2)=r\) and both \(G_1\) and \(G_2\) are convex subgraphs of H. It is known that \((G_1,G_2,r)\) exists for every \(G_1\), \(G_2\) with \(r \ge \left\lfloor diam(G_1)/2\right\rfloor +\left\lfloor diam(G_2)/2\right\rfloor +2\). In this paper we show the existence of \((G_1,G_2,r)\) for every \(G_1\), \(G_2\) and \(r \ge 1\). We also obtain a sharp upper bound for the maximum status difference in a graph G.  相似文献   

16.
This paper addresses the problem of modifying the edge lengths of a tree in minimum total cost such that a prespecified vertex becomes the 1-center of the perturbed tree. This problem is called the inverse 1-center problem on trees. We focus on the problem under Chebyshev norm and Hamming distance. From special properties of the objective functions, we can develop combinatorial algorithms to solve the problem. Precisely, if there does not exist any vertex coinciding with the prespecified vertex during the modification of edge lengths, the problem under Chebyshev norm or bottleneck Hamming distance is solvable in \(O(n\log n)\) time, where \(n+1\) is the number of vertices of the tree. Dropping this condition, the problem can be solved in \(O(n^{2})\) time.  相似文献   

17.
A partition of the vertex set V(G) of a graph G into \(V(G)=V_1\cup V_2\cup \cdots \cup V_k\) is called a k-strong subcoloring if \(d(x,y)\ne 2\) in G for every \(x,y\in V_i\), \(1\le i \le k\) where d(xy) denotes the length of a shortest x-y path in G. The strong subchromatic number is defined as \(\chi _{sc}(G)=\text {min}\{ k:G \text { admits a }k\)-\(\text {strong subcoloring}\}\). In this paper, we explore the complexity status of the StrongSubcoloring problem: for a given graph G and a positive integer k, StrongSubcoloring is to decide whether G admits a k-strong subcoloring. We prove that StrongSubcoloring is NP-complete for subcubic bipartite graphs and the problem is polynomial time solvable for trees. In addition, we prove the following dichotomy results: (i) for the class of \(K_{1,r}\)-free split graphs, StrongSubcoloring is in P when \(r\le 3\) and NP-complete when \(r>3\) and (ii) for the class of H-free graphs, StrongSubcoloring is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Next, we consider a lower bound on the strong subchromatic number. A strong set is a set S of vertices of a graph G such that for every \(x,y\in S\), \(d(x,y)= 2\) in G and the cardinality of a maximum strong set in G is denoted by \(\alpha _{s}(G)\). Clearly, \(\alpha _{s}(G)\le \chi _{sc}(G)\). We consider the complexity status of the StrongSet problem: given a graph G and a positive integer k, StrongSet asks whether G contains a strong set of cardinality k. We prove that StrongSet is NP-complete for (i) bipartite graphs and (ii) \(K_{1,4}\)-free split graphs, and it is polynomial time solvable for (i) trees and (ii) \(P_4\)-free graphs.  相似文献   

18.
Let \(k\ge 2, p\ge 1, q\ge 0\) be integers. We prove that every \((4kp-2p+2q)\)-connected graph contains p spanning subgraphs \(G_i\) for \(1\le i\le p\) and q spanning trees such that all \(p+q\) subgraphs are pairwise edge-disjoint and such that each \(G_i\) is k-edge-connected, essentially \((2k-1)\)-edge-connected, and \(G_i -v\) is \((k-1)\)-edge-connected for all \(v\in V(G)\). This extends the well-known result of Nash-Williams and Tutte on packing spanning trees, a theorem that every 6p-connected graph contains p pairwise edge-disjoint spanning 2-connected subgraphs, and a theorem that every \((6p+2q)\)-connected graph contains p spanning 2-connected subgraphs and q spanning trees, which are all pairwise edge-disjoint. As an application, we improve a result on k-arc-connected orientations.  相似文献   

19.
Let G be a connected graph with \(n\ge 2\) vertices. Suppose that a fire breaks out at a vertex v of G. A firefighter starts to protect vertices. At each step, the firefighter protects two vertices not yet on fire. At the end of each step, the fire spreads to all the unprotected vertices that have a neighbour on fire. Let sn\(_2(v)\) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v. The 2-surviving rate \(\rho _2(G)\) of G is defined to be the real number \(\frac{1}{n^2} \sum _{v\in V(G)} \mathrm{sn}_2(v)\). Then it is obvious that \(0<\rho _2(G)<1\). The graph G is called 2-good if there is a constant \(c>0\) such that \(\rho _2(G)>c\). In this paper, we prove that every planar graph with \(n\ge 2\) vertices and without chordal 5-cycles is 2-good.  相似文献   

20.
An L(2, 1)-labeling for a graph \(G=(V,E)\) is a function f on V such that \(|f(u)-f(v)|\ge 2\) if u and v are adjacent and f(u) and f(v) are distinct if u and v are vertices of distance two. The L(2, 1)-labeling number, or the lambda number \(\lambda (G)\), for G is the minimum span over all L(2, 1)-labelings of G. When \(P_{m}\times C_{n}\) is the direct product of a path \(P_m\) and a cycle \(C_n\), Jha et al. (Discret Appl Math 145:317–325, 2005) computed the lambda number of \(P_{m}\times C_{n}\) for \(n\ge 3\) and \(m=4,5\). They also showed that when \(m\ge 6\) and \(n\ge 7\), \(\lambda (P_{m}\times C_{n})=6\) if and only if n is the multiple of 7 and conjectured that it is 7 if otherwise. They also showed that \(\lambda (C_{7i}\times C_{7j})=6\) for some ij. In this paper, we show that when \(m\ge 6\) and \(n\ge 3\), \(\lambda (P_m\times C_n)=7\) if and only if n is not a multiple of 7. Consequently the conjecture is proved. Here we also provide the conditions on m and n such that \(\lambda (C_m\times C_n)\le 7\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号