首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

2.
Adaptive design is widely used in clinical trials. In this paper, we consider the problem of estimating the mean of the selected normal population in two-stage adaptive designs. Under the LINEX and L2 loss functions, admissibility and minimax results are derived for some location invariant estimators of the selected normal mean. The naive sample mean estimator is shown to be inadmissible under the LINEX loss function and to be not minimax under both loss functions.  相似文献   

3.
This article proposes new optimal and minimax designs, which allow early stopping not only for ineffectiveness or toxicity but also for sufficient effectiveness and safety. These designs may facilitate effective drug development by detecting sufficient effectiveness and safety at an early stage or by detecting ineffectiveness or excessive toxicity at an early stage. The proposed design has advantage over other designs in the sense that it can control the type I error rate and is robust against the real association parameter. Comparing to Jin's design, it is always advantageous in terms of expected sample size.  相似文献   

4.
A D-optimal minimax design criterion is proposed to construct two-level fractional factorial designs, which can be used to estimate a linear model with main effects and some specified interactions. D-optimal minimax designs are robust against model misspecification and have small biases if the linear model contains more interaction terms. When the D-optimal minimax criterion is compared with the D-optimal design criterion, we find that the D-optimal design criterion is quite robust against model misspecification. Lower and upper bounds derived for the loss functions of optimal designs can be used to estimate the efficiencies of any design and evaluate the effectiveness of a search algorithm. Four algorithms to search for optimal designs for any run size are discussed and compared through several examples. An annealing algorithm and a sequential algorithm are particularly effective to search for optimal designs.  相似文献   

5.
A bioequivalence test is to compare bioavailability parameters, such as the maximum observed concentration (Cmax) or the area under the concentration‐time curve, for a test drug and a reference drug. During the planning of a bioequivalence test, it requires an assumption about the variance of Cmax or area under the concentration‐time curve for the estimation of sample size. Since the variance is unknown, current 2‐stage designs use variance estimated from stage 1 data to determine the sample size for stage 2. However, the estimation of variance with the stage 1 data is unstable and may result in too large or too small sample size for stage 2. This problem is magnified in bioequivalence tests with a serial sampling schedule, by which only one sample is collected from each individual and thus the correct assumption of variance becomes even more difficult. To solve this problem, we propose 3‐stage designs. Our designs increase sample sizes over stages gradually, so that extremely large sample sizes will not happen. With one more stage of data, the power is increased. Moreover, the variance estimated using data from both stages 1 and 2 is more stable than that using data from stage 1 only in a 2‐stage design. These features of the proposed designs are demonstrated by simulations. Testing significance levels are adjusted to control the overall type I errors at the same level for all the multistage designs.  相似文献   

6.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

7.
The D‐optimal minimax criterion is proposed to construct fractional factorial designs. The resulting designs are very efficient, and robust against misspecification of the effects in the linear model. The criterion was first proposed by Wilmut & Zhou (2011); their work is limited to two‐level factorial designs, however. In this paper we extend this criterion to designs with factors having any levels (including mixed levels) and explore several important properties of this criterion. Theoretical results are obtained for construction of fractional factorial designs in general. This minimax criterion is not only scale invariant, but also invariant under level permutations. Moreover, it can be applied to any run size. This is an advantage over some other existing criteria. The Canadian Journal of Statistics 41: 325–340; 2013 © 2013 Statistical Society of Canada  相似文献   

8.
Two-stage k-sample designs for the ordered alternative problem   总被引:2,自引:0,他引:2  
In preclinical studies and clinical dose-ranging trials, the Jonckheere-Terpstra test is widely used in the assessment of dose-response relationships. Hewett and Spurrier (1979) presented a two-stage analog of the test in the context of large sample sizes. In this paper, we propose an exact test based on Simon's minimax and optimal design criteria originally used in one-arm phase II designs based on binary endpoints. The convergence rate of the joint distribution of the first and second stage test statistics to the limiting distribution is studied, and design parameters are provided for a variety of assumed alternatives. The behavior of the test is also examined in the presence of ties, and the proposed designs are illustrated through application in the planning of a hypercholesterolemia clinical trial. The minimax and optimal two-stage procedures are shown to be preferable as compared with the one-stage procedure because of the associated reduction in expected sample size for given error constraints.  相似文献   

9.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Two‐stage design is very useful in clinical trials for evaluating the validity of a specific treatment regimen. When the second stage is allowed to continue, the method used to estimate the response rate based on the results of both stages is critical for the subsequent design. The often‐used sample proportion has an evident upward bias. However, the maximum likelihood estimator or the moment estimator tends to underestimate the response rate. A mean‐square error weighted estimator is considered here; its performance is thoroughly investigated via Simon's optimal and minimax designs and Shuster's design. Compared with the sample proportion, the proposed method has a smaller bias, and compared with the maximum likelihood estimator, the proposed method has a smaller mean‐square error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

12.
Let X have a gamma distribution with known shape parameter θr;aL and unknown scale parameter θ. Suppose it is known that θ ≥ a for some known a > 0. An admissible minimax estimator for scale-invariant squared-error loss is presented. This estimator is the pointwise limit of a sequence of Bayes estimators. Further, the class of truncated linear estimators C = {θρρ(x) = max(a, ρ), ρ > 0} is studied. It is shown that each θρ is inadmissible and that exactly one of them is minimax. Finally, it is shown that Katz's [Ann. Math. Statist., 32, 136–142 (1961)] estimator of θ is not minimax for our loss function. Some further properties of and comparisons among these estimators are also presented.  相似文献   

13.
This paper concerns designed experiments involving observations of orientations following the models of Prentice (1989) and Rivest &Chang (2006). The authors state minimal conditions on the designs for consistent least squares estimation of the matrix parameters in these models. The conditions are expressed in terms of the axes and rotation angles of the design orientations. The authors show that designs satisfying U1 + … + Un = 0 are optimal in the sense of minimizing the estimation error average angular distance. The authors give constructions of optimal n‐point designs when n ≥ 4 and they compare the performance of several designs through approximations and simulation.  相似文献   

14.
It is well known that it is difficult to construct minimax optimal designs. Furthermore, since in practice we never know the true error variance, it is important to allow small deviations and construct robust optimal designs. We investigate a class of minimax optimal regression designs for models with heteroscedastic errors that are robust against possible misspecification of the error variance. Commonly used A-, c-, and I-optimality criteria are included in this class of minimax optimal designs. Several theoretical results are obtained, including a necessary condition and a reflection symmetry for these minimax optimal designs. In this article, we focus mainly on linear models and assume that an approximate error variance function is available. However, we also briefly discuss how the methodology works for nonlinear models. We then propose an effective algorithm to solve challenging nonconvex optimization problems to find minimax designs on discrete design spaces. Examples are given to illustrate minimax optimal designs and their properties.  相似文献   

15.
We study designs, optimal up to and including terms that are O(n ?1), for weighted least squares regression, when the weights are intended to be inversely proportional to the variances but are estimated with random error. We take a finite, but arbitrarily large, design space from which the support points are to be chosen, and obtain the optimal proportions of observations to be assigned to each point. Specific examples of D- and I-optimal design for polynomial responses are studied. In some cases the same designs that are optimal under homoscedasticity remain so for a range of variance functions; in others there tend to be more support points than are required in the homoscedastic case. We also exhibit minimax designs, that minimize the maximum, over finite classes of variance functions, value of the loss. These also tend to have more support points, often resulting from the breaking down of replicates into clusters.  相似文献   

16.
Bernd Droge 《Statistics》2013,47(3):181-203
This paper is mainly concerned with deriving finite-sample properties of least squares estimators for the regression function in a nonparametric regression situation under some simplifying assumptions such as normally distributed errors with a common known variance. The selection of basis functions to be used for the construction of an estimator may be regarded as a smoothing problem, and will usually be done in a data-dependent way, A straightforward application of a result by P. J. Kernpthorne yields that, under a squared error loss, all selection procedures are admissible. Furthermore, the minimax approach provides an interpolating estimator, which is often impractical, Therefore, within a certain class of selection procedures an optimal one is determined using the minimax regret principle. It can be seen to behave similarly to the procedure minimizing either an unbiased risk estimator or, equivalently, the Cp-criterion.  相似文献   

17.
Results in five areas of survey sampling dealing with the choice of the sampling design are reviewed. In Section 2, the results and discussions surrounding the purposive selection methods suggested by linear regression superpopulation models are reviewed. In Section 3, similar models to those in the previous section are considered; however, random sampling designs are considered and attention is focused on the optimal choice of πj. Then in Section 4, systematic sampling methods obtained under autocorrelated superpopulation models are reviewed. The next section examines minimax sampling designs. The work in the final section is based solely on the randomization. In Section 6 methods of sample selection which yield inclusion probabilities πj = n/N and πij = n(n - 1)/N(N - 1), but for which there are fewer than NCn possible samples, are mentioned briefly.  相似文献   

18.
Abstract

Designs for the first order trigonometric regression model over an interval on the real line are considered for the situation where estimation of the slope of the response surface at various points in the factor space is of primary interest. Minimization of the variance of the estimated slope at a point maximized over all points in the region of interest is taken as the design criterion. Optimal designs under the minimax criterion are derived for the situation where the design region and the region of interest are identical and a symmetric “partial cycle”. Some comparisons of the minimax designs with the traditional D- and A-optimal designs are provided. Efficiencies of some exact designs under the minimax criterion are also investigated.  相似文献   

19.
CVX‐based numerical algorithms are widely and freely available for solving convex optimization problems but their applications to solve optimal design problems are limited. Using the CVX programs in MATLAB, we demonstrate their utility and flexibility over traditional algorithms in statistics for finding different types of optimal approximate designs under a convex criterion for nonlinear models. They are generally fast and easy to implement for any model and any convex optimality criterion. We derive theoretical properties of the algorithms and use them to generate new A‐, c‐, D‐ and E‐optimal designs for various nonlinear models, including multi‐stage and multi‐objective optimal designs. We report properties of the optimal designs and provide sample CVX program codes for some of our examples that users can amend to find tailored optimal designs for their problems. The Canadian Journal of Statistics 47: 374–391; 2019 © 2019 Statistical Society of Canada  相似文献   

20.
Mike Jacroux 《Statistics》2013,47(5):1022-1029
In this paper, we consider the construction of optimal blocked main effects designs where m two-level factors are to be studied in N runs which are partitioned into b blocks of equal size. For N ≡ 2±od4 sufficient conditions are derived for a design to be Φ f optimal among all designs having main effects occurring equally often at their high and low levels within blocks and then this result is extended to the class of all designs for the case when the block size is two. Methods of constructing designs satisfying the sufficient conditions derived are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号