首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by a real world application, we study the multiple knapsack problem with assignment restrictions (MKAR). We are given a set of items, each with a positive real weight, and a set of knapsacks, each with a positive real capacity. In addition, for each item a set of knapsacks that can hold that item is specified. In a feasible assignment of items to knapsacks, each item is assigned to at most one knapsack, assignment restrictions are satisfied, and knapsack capacities are not exceeded. We consider the objectives of maximizing assigned weight and minimizing utilized capacity.We focus on obtaining approximate solutions in polynomial computational time. We show that simple greedy approaches yield 1/3-approximation algorithms for the objective of maximizing assigned weight. We give two different 1/2-approximation algorithms: the first one solves single knapsack problems successively and the second one is based on rounding the LP relaxation solution. For the bicriteria problem of minimizing utilized capacity subject to a minimum requirement on assigned weight, we give an (1/3,2)-approximation algorithm.  相似文献   

2.
A virtual business problem is studied, in which a company-contractor outsources production to specialized subcontractors. Finances of the contractor and resource capacities of subcontractors are limited. The objective is to select subcontractors and distribute a part of the demanded production among them so that the profit of the contractor is maximized. A generalization of the knapsack problem, called Knapsack-of-Knapsacks (K-of-K), is used to model this situation, in which items have to be packed into small knapsacks and small knapsacks have to be packed into a large knapsack. A fully polynomial time approximation scheme is developed to solve the problem K-of-K.  相似文献   

3.
The 0–1 linear knapsack problem with a single continuous variable (KPC) is a natural generalization of the standard 0–1 linear knapsack problem (KP). In KPC, the capacity of the knapsack is not fixed, but can be adjusted by a continuous variable. This paper studies the approximation algorithm on KPC. Firstly, assuming that the weight of each item is at most the original capacity of the knapsack, we give a 2-approximation algorithm on KPC by generalizing the 2-approximation algorithm on KP. Then, without the above assumption, we give another 2-approximation algorithm on KPC for general cases by extending the first algorithm.  相似文献   

4.

The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.

  相似文献   

5.
In this paper, we propose an exact algorithm for the knapsack sharing problem. The proposed algorithm seems quite efficient in the sense that it solves quickly some large problem instances. The problem is decomposed into a series of single constraint knapsack problems; and by applying the dynamic programming and another strategy, we solve optimally the original problem. The performance of the exact algorithm is evaluated on a set of medium and large problem instances (a total of 240 problem instances). This algorithm is parallelizable and this is one of its important feature.  相似文献   

6.
Many combinatorial optimization problems can be formulated as 0/1 integer programs (0/1 IPs). The investigation of the structure of these problems raises the following tasks: count or enumerate the feasible solutions and find an optimal solution according to a given linear objective function. All these tasks can be accomplished using binary decision diagrams (BDDs), a very popular and effective datastructure in computational logics and hardware verification. We present a novel approach for these tasks which consists of an output-sensitive algorithm for building a BDD for a linear constraint (a so-called threshold BDD) and a parallel AND operation on threshold BDDs. In particular our algorithm is capable of solving knapsack problems, subset sum problems and multidimensional knapsack problems. BDDs are represented as a directed acyclic graph. The size of a BDD is the number of nodes of its graph. It heavily depends on the chosen variable ordering. Finding the optimal variable ordering is an NP-hard problem. We derive a 0/1 IP for finding an optimal variable ordering of a threshold BDD. This 0/1 IP formulation provides the basis for the computation of the variable ordering spectrum of a threshold function. We introduce our new tool azove 2.0 as an enhancement to azove 1.1 which is a tool for counting and enumerating 0/1 points. Computational results on benchmarks from the literature show the strength of our new method.  相似文献   

7.
We study the classical 0–1 knapsack problem with additional restrictions on pairs of items. A conflict constraint states that from a certain pair of items at most one item can be contained in a feasible solution. Reversing this condition, we obtain a forcing constraint stating that at least one of the two items must be included in the knapsack. A natural way for representing these constraints is the use of conflict (resp. forcing) graphs. By modifying a recent result of Lokstanov et al. (Proceedings of the 25th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 570–581, 2014) we derive a fairly complicated FPTAS for the knapsack problem on weakly chordal conflict graphs. Next, we show that the techniques of modular decompositions and clique separators, widely used in the literature for solving the independent set problem on special graph classes, can be applied to the knapsack problem with conflict graphs. In particular, we can show that every positive approximation result for the atoms of prime graphs arising from such a decomposition carries over to the original graph. We point out a number of structural results from the literature which can be used to show the existence of an FPTAS for several graph classes characterized by the exclusion of certain induced subgraphs. Finally, a PTAS for the knapsack problem with H-minor free conflict graph is derived. This includes planar graphs and, more general, graphs of bounded genus. The PTAS is obtained by expanding a general result of Demaine et al. (Proceedings of 46th annual IEEE symposium on foundations of computer science, FOCS 2005, pp 637–646, 2005). The knapsack problem with forcing graphs can be transformed into a minimization knapsack problem with conflict graphs. It follows immediately that all our FPTAS results of the current and a previous paper carry over from conflict graphs to forcing graphs. In contrast, the forcing graph variant is already inapproximable on planar graphs.  相似文献   

8.
A fully polynomial time approximation scheme (FPTAS) is presented for the classical 0-1 knapsack problem. The new approach considerably improves the necessary space requirements. The two best previously known approaches need O(n + 1/3) and O(n · 1/) space, respectively. Our new approximation scheme requires only O(n + 1/2) space while also reducing the running time.  相似文献   

9.
A vector merging problem is introduced where two vectors of length n are merged such that the k-th entry of the new vector is the minimum over of the -th entry of the first vector plus the sum of the first k – + 1 entries of the second vector. For this problem a new algorithm with O(n log n) running time is presented thus improving upon the straightforward O(n 2) time bound.The vector merging problem can appear in different settings of dynamic programming. In particular, it is applied for a recent fully polynomial time approximation scheme (FPTAS) for the classical 0–1 knapsack problem by the same authors.  相似文献   

10.
The subset sum problem is a well-known NP-complete problem in which we wish to find a packing (subset) of items (integers) into a knapsack with capacity so that the sum of the integers in the packing is at most the capacity of the knapsack and at least a given integer threshold. In this paper, we study the problem of reconfiguring one packing into another packing by moving only one item at a time, while at all times maintaining the feasibility of packings. First we show that this decision problem is strongly NP-hard, and is PSPACE-complete if we are given a conflict graph for the set of items in which each vertex corresponds to an item and each edge represents a pair of items that are not allowed to be packed together into the knapsack. We then study an optimization version of the problem: we wish to maximize the minimum sum among all packings in a reconfiguration. We show that this maximization problem admits a polynomial-time approximation scheme, while the problem is APX-hard if we are given a conflict graph.  相似文献   

11.
For a basic version (i.e., maximizing the number of base-pairs) of the RNA secondary structure prediction problem and the construction of a parse tree for a stochastic context-free language, O(n3) time algorithms were known. For both problems, this paper shows slightly improved O(n3(log log n)1/2/(log n)1/2) time exact algorithms, which are obtained by combining Valiant's algorithm for context-free recognition with fast funny matrix multiplication. Moreover, this paper shows an O(n2.776 + (1/)O(1)) time approximation algorithm for the former problem and an O(n2.976 log n + (1/)O(1)) time approximation algorithm for the latter problem, each of which has a guaranteed approximation ratio 1 – for any positive constant , where the absolute value of the logarithm of the probability is considered as an objective value in the latter problem. The former algorithm is obtained from a non-trivial modification of the well-known O(n3) time dynamic programming algorithm, and the latter algorithm is obtained by combining Valiant's algorithm with approximate funny matrix multiplication. Several related results are shown too.  相似文献   

12.
In a previous work we proposed a variable fixing heuristics for the 0-1 Multidimensional knapsack problem (01MDK). This approach uses fractional optima calculated in hyperplanes which contain the binary optimum. This algorithm obtained best lower bounds on the OR-Library benchmarks. Although it is very attractive in terms of results, this method does not prove the optimality of the solutions found and may fix variables to a non-optimal value. In this paper, we propose an implicit enumeration based on a reduced costs analysis which tends to fix non-basic variables to their exact values. The combination of two specific constraint propagations based on reduced costs and an efficient enumeration framework enable us to fix variables on the one hand and to prune significantly the search tree on the other hand. Experimentally, our work provides two main contributions: (1) we obtain several new optimal solutions on hard instances of the OR-Library and (2) we reduce the bounds of the number of items at the optimum on several harder instances.  相似文献   

13.
In this paper we propose new lower and upper bounds for the max-min 0-1 knapsack problem, employing a mixture of two relaxations. In addition, in order to expose whether the bounds are practical or not, we implement a method incorporating the bounds to achieve an optimal solution of the problem.  相似文献   

14.
A Semidefinite Programming Approach to the Quadratic Knapsack Problem   总被引:2,自引:0,他引:2  
In order to gain insight into the quality of semidefinite relaxations of constrained quadratic 0/1 programming problems we study the quadratic knapsack problem. We investigate several basic semidefinite relaxations of this problem and compare their strength in theory and in practice. Various possibilities to improve these basic relaxations by cutting planes are discussed. The cutting planes either arise from quadratic representations of linear inequalities or from linear inequalities in the quadratic model. In particular, a large family of combinatorial cuts is introduced for the linear formulation of the knapsack problem in quadratic space. Computational results on a small class of practical problems illustrate the quality of these relaxations and cutting planes.  相似文献   

15.
We consider stochastic variants of the NP-hard 0/1 knapsack problem in which item values are deterministic and item sizes are independent random variables with known, arbitrary distributions. Items are placed in the knapsack sequentially, and the act of placing an item in the knapsack instantiates its size. The goal is to compute a policy for insertion of the items, that maximizes the expected value of the set of items placed in the knapsack. These variants that we study differ only in the formula for computing the value of the final solution obtained by the policy. We consider both nonadaptive policies (that designate a priori a fixed subset or permutation of items to insert) and adaptive policies (that can make dynamic decisions based on the instantiated sizes of the items placed in the knapsack thus far). Our work characterizes the benefit of adaptivity. For this purpose we use a measure called the adaptivity gap: the supremum over instances of the ratio between the expected value obtained by an optimal adaptive policy and the expected value obtained by an optimal non-adaptive policy. We show that while for the variants considered in the literature this quantity is bounded by a constant there are other variants where it is unbounded.  相似文献   

16.
In this paper we consider combinatorial optimization problems whose feasible sets are simultaneously restricted by a binary knapsack constraint and a cardinality constraint imposing the exact number of selected variables. In particular, such sets arise when the feasible set corresponds to the bases of a matroid with a side knapsack constraint, for instance the weighted spanning tree problem and the multiple choice knapsack problem. We introduce the family of implicit cover inequalities which generalize the well-known cover inequalities for such feasible sets and discuss the lifting of the implicit cover inequalities. A computational study for the weighted spanning tree problem is reported.  相似文献   

17.
The two-dimensional strip packing problem is a generalization of the classic one-dimensional bin packing problem. It has many important applications such as costume clipping, material cutting, real-world planning, packing, scheduling etc. Average-case performance analysis of approximation algorithms attracts a lot of attention because it plays a crucial role in selecting an appropriate algorithm for a given application. While approximation algorithms for two-dimensional packing are frequently presented, the results of their average-case performance analyses have seldom been reported due to intractability. In this paper, we analyze the average-case performance of Next Fit Decreasing Height (NFDH) algorithm, one of the first strip packing algorithms proposed by Coffman, Jr. in 1980. We prove that the expected height of packing with NFDH algorithm, when the heights and widths of the rectangle items are independent and both obey (0, 1] uniform distribution, is about n/3, where n is the number of rectangle items. We also validate the theoretical result with experiments.This work is supported by National 973 Fundamental Research Project of China on NP Complete Problems and High Performance Software (No. G1998030403).  相似文献   

18.
This paper presents a new approximation algorithm for a vehicle routing problem on a tree-shaped network with a single depot. Customers are located on vertices of the tree, and each customer has a positive demand. Demands of customers are served by a fleet of identical vehicles with limited capacity. It is assumed that the demand of a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with in this paper asks to find a set of tours of the vehicles with minimum total lengths. Each tour begins at the depot, visits a subset of the customers and returns to the depot without violating the capacity constraint. We propose a 1.35078-approximation algorithm for the problem (exactly, ), which is an improvement over the existing 1.5-approximation.  相似文献   

19.
An improved approximation algorithm is presented in this paper for the multicast k-tree routing problem. The algorithm has a worst case performance ratio of (2.4 + ρ), where ρ is the best approximation ratio for the metric Steiner tree problem (and is about 1.55 so far). The previous best approximation algorithm for the multicast k-tree routing problem has a performance ratio of 4. Two techniques, weight averaging and tree partitioning, are developed to facilitate the algorithm design and analysis.Research supported by AICML, CFI, NSERC, PENCE, a Startup Grant from the University of Alberta, and NNSF Grant 60373012.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号