首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Riparian areas in Arizona are being encroached upon by urban developments. This study investigated the impacts of different urban housing densities on riparian vegetation structure along ephemeral streams. Nine sites representing three levels of housing density were selected within the town of Marana, located in southeast Arizona. The housing densities were categorized as high (7–8 houses ha?1), moderate (2.5–4.5 houses ha?1), and low (< 1.5 houses ha?1). Each treatment had three replications. The urban developments were relatively young (less than 15 years). No significant differences were found among the treatments for the tree variables (density, height, mean canopy volume and total canopy volume) or the herbaceous vegetation variables (species richness, percentage of introduced species and percentage of ground cover). However, the shrub variables (mean density, mean height, mean canopy volume, total canopy volume and species richness) showed some significant differences. Shrub density and species richness was significantly greater adjacent to ephemeral channels than just three meters upland. In addition, whitethorn acacia shrubs were significantly taller and larger adjacent to the stream channels in the high and moderate housing density sites than in the low housing density sites. Creosote shrubs showed the opposite trend. Increased runoff in the more heavily urbanized streams may have promoted the growth of the facultative riparian species (whitethorn acacia) but not the non-riparian species (creosote). Overall, in these young developments, vegetation was resilient across the levels of urbanization explored in the study.  相似文献   

3.
Spatio-temporal analysis of urban temperature in Bandung City,Indonesia   总被引:1,自引:0,他引:1  
This study presents an evaluation of urban micro-climate about the exsistence level urban vegetation, in association with the urban temperature (surface temperature) and urban built-up area of Bandung City. The changes in urban vegetation cover, urban temperature, and urban built-up area observed using Landsat 5 TM and Landsat 7 ETM + bands were evaluated on the basis of the WDRVI (Wide Dynamic Range Vegetation Indices), NDBI (Normalized Difference Built-up Index), and SAVI (Soil-Adjusted Vegetation Index). It was found that, due to the uncontrolled urban growth and the removal of urban vegetation cover and urban green space, there was a significant increase in urban temperature, in NDBI, but a decrease in WDRVI. The maximum urban temperatures, NDBI, and the minimum values of WDRVI indices were established in 2009. Therefore the results indicate a significant effect of higher density of impervious surfaces coverage (urban built-up area) contributing significantly to the increase of urban temperature. Again the results also confirm that urban vegetation landscape coverage in the surrounding of industrial area reduced the urban temperature. Based on the results, we recommend the city government to provide more urban green space by cooperating with private land owner, in order to decrease urban temperature and create a healthier living environment for urban inhabitants.  相似文献   

4.
Urban cores are primarily associated with economic activity: they are places where people live, work and engage in a range of leisure activities. Natural elements within the environment are recognised as having an important role in promoting quality of life. An investigation into the urban character of Manchester City Centre (UK) combining an analysis of the surface cover with the mapping of urban morphology types (UMTs) shows the extent to which green space permeates the built matrix. Around 20% of the urban core was covered by evapotranspiring surfaces. UMTs were differentiated along axes which were characterised by the intensity of grassland management and the density of building. The results presented here contribute to the on going debate around the development of cities and the relationship between the natural and built environments and provide guidance for those challenged with designing these environments.  相似文献   

5.

Biological invasions are the second most important cause of species extinction. Aided by processes such as transportation and urbanization, exotic species can establish and spread to new locations, causing changes in the function and structure of ecosystems. The House Sparrow is a widespread and highly abundant landbird associated to human presence. Previous studies performed in urban landscapes have suggested that this species could be acting, in synergy with urbanization, as a potential threat to native urban avian assemblages. In this study we assessed the relationship between House Sparrow density and native bird species richness in a region where the sparrows are scarce and sparsely distributed. We surveyed bird assemblages in and around four small-sized human settlements, considering three conditions in relation to House Sparrow presence: urban invaded, urban non-invaded, and non-urban non-invaded. To assess the potential detrimental role of House Sparrows on native bird species richness, we measured, additionally to sparrow densities, 20 predictor variables that describe vegetation structure and complexity, as well as urban infrastructure and human activities across four seasons of 1 year. Our results show that maximum shrub height was positively related to bird species richness, built cover was negatively associated with it, and House Sparrow invaded sites were related to a significant decrease of bird species richness, with increasing richness loss when more sparrows were present. Thus, we here provide evidence that urban areas can act in synergy with the presence of House Sparrows (even in low densities) in the urban-related species richness decline pattern.

  相似文献   

6.
The effects of trampling on the understorey vegetation were studied in boreal urban forests of different fertility in the greater Helsinki area, Finland. The three studied forest types in decreasing order of fertility were: 1) herb-rich heath forest, 2) mesic heath forest, and 3) sub-xeric heath forest. We inventoried the cover percentages of understorey vegetation in 40 herb-rich, 75 mesic and 40 sub-xeric biotopes located in 51 urban forests varying in size (0.6–502 ha). Cover percentages were compared to those of untrampled reference areas. In our study, trampling tolerance increased with increasing fertility of the forest type. Wear of understorey vegetation correlated positively with the number of residents (i.e. recreational pressure) around the forest patch. In general, understorey vegetation cover in all three forest types was lower than in the same forest types in untrampled reference areas. Ground layer cover in urban forests was less than half of that in reference areas. Mosses, lichens, and dwarf shrubs, especially Vaccinium vitis-idaea, proved to be sensitive to trampling and consequently decreased in cover. The cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs increased.  相似文献   

7.
Urbanization leads to long-term modification of landscapes by habitat loss, fragmentation, and the creation of new habitats. Species’ distributions respond to these modifications of habitat availability, but the combination of parameters and scale at which habitat alteration most strongly influences species distributions is poorly understood. We evaluated responses of neotropical migratory birds, a group known to be sensitive to habitat modification, across a gradient of urbanization in the southeastern United States. Thirteen Breeding Bird Survey routes, each with 40 to 50 point counts, were used to quantify species richness across the gradient of urbanization extending from downtown areas of Columbus, GA to natural woodlands. Buffers of 100, 200, and 1000 m radii were constructed from remote images around each counting point to quantify land-use with the goal of evaluating land-use parameters and scales that best described spatial variation in migrant bird species richness. Within each buffer we quantified the proportion of each cover type and within the 1000 m buffers we included several configuration parameters. We used an information-theoretic approach to separate models whose predictor variables were land-use parameters. Because measures of landscape configuration were all correlated with urban cover, these variables were entered separately. In 2002, the best model was composed of large-scale urban cover (negative effect) and mid-scale mixed hardwoods (negative and positive effect) and transitional cover (negative and positive effect) as well as the interaction between the latter two terms (positive effect). In 2003, the best model was composed of weighted edge density (negative effect), mid-scale mixed hardwood cover (negative and positive effect) and large scale transitional cover (positive effect) and the interaction between mixed hardwoods and weighted edge density (positive effect). Our results indicate that large scale habitat attributes influence the local species richness of migrant birds more than smaller scales. These results also indicate that urbanization, through increased urban cover or increasing edge contrast, has strong negative effects on species richness. Our findings support the contention that the conservation value of small woodlots in urban settings may be minimal and suggest that conservation of migratory birds will be best achieved by giving higher priority to sites where urban cover is still low and by preserving large areas of “green space” in urbanizing landscapes. The negative influence of urban cover combined with relatively minor effects of non-urban habitats on distributions of neotropical migratory birds indicates that continued urbanization of landscapes is a serious concern for conservation efforts.  相似文献   

8.

High population growth in the tropics is driving urbanisation, removing diverse natural ecosystems. This is causing native species to suffer while introduced synanthropes flourish. City planners are developing urban greenspace networks, in part trying to address this issue. Architects contribute to these greenspace networks by designing elevated and ground level green spaces on large-scale buildings. However, little evidence is available on whether building green spaces support native fauna. This is true for birds in tropical Singapore that support important ecosystem services and have existence value. Therefore, in this study, we conducted bird surveys and statistical analyses to determine, if and how vegetation on three building green space types (ground gardens, roof gardens and green walls) have a positive impact on native or introduced bird species. We found that elevated greenery (roof gardens and green walls) on large-scale buildings supported a higher richness of birds and abundance of urban native birds than control roofs and walls without vegetation. Ground gardens supported similar levels of native species as roof gardens but also a larger proportion of generalist synanthropes. However, we found no tropical forest habitat specialists across any space type. Therefore, we recommend roof gardens and ground gardens as a potential space for urban natives outside of a less competitive ground-level urban environment. Our study also found certain building design elements (height of elevated space, presence of specific plants) supported different species groups. Therefore, we suggest that these ecological requirements for different species groups are considered when designing a building’s green space.

  相似文献   

9.
Urban development either eliminates, or severely fragments, native vegetation, and therefore alters the distribution and abundance of species that depend on it for habitat. We assessed the impact of urban development on bird communities at 121 sites in and around Perth, Western Australia. Based on data from community surveys, at least 83 % of 65 landbirds were found to be dependent, in some way, on the presence of native vegetation. For three groups of species defined by specific patterns of habitat use (bushland birds), there were sufficient data to show that species occurrences declined as the landscape changed from variegated to fragmented to relictual, according to the percentage of vegetation cover remaining. For three other groups (urban birds) species occurrences were either unrelated to the amount of vegetation cover, or increased as vegetation cover declined. In order to maximise the chances of retaining avian diversity when planning for broad-scale changes in land-use (i.e. clearing native vegetation for housing or industrial development), land planners should aim for a mosaic of variegated urban landscapes (>60 % vegetation retention) set amongst the fragmented and relictual urban landscapes (<60 % vegetation retention) that are characteristic of most cities and their suburbs. Management actions for conserving remnant biota within fragmented urban landscapes should concentrate on maintaining the integrity and quality of remnant native vegetation, and aim at building awareness among the general public of the conservation value of remnant native vegetation.  相似文献   

10.

Actions and policies to enhance biodiversity in the urban landscape must match the spatial scale at which biodiversity responds to the management and target variables. To this end, we compare the importance and effect of different kinds of greenery cover and road-lane density on bird and butterfly species richness between two landscape scales: 50-m versus 126-m radii around point counts (equivalent to areas of 0.8 h and 5 ha, respectively). We also compared the results against those of an earlier study using 500-m walking transects with widths of 100 m (i.e., 5 ha). Road lane density was more important at the 126-m than 50-m radius for both birds and butterflies. For birds, natural vegetation or forest cover and cultivated shrub cover were also more important at 126-m radius whereas the cultivated tree canopy cover was more important at 50-m radius. Cultivated tree cover and natural vegetation or forest cover were positively associated with species richness while road lane density and cultivated shrub cover were negatively associated with species richness. The results from point counts generally corroborate the results from the transects-based study, except that the short-duration point counts performed poorly in sampling butterflies. Our results indicate that in designing urban greenery policy, the plot sizes of individual developments is an appropriate spatial scale for the stipulation of tree cover targets, while urban planners have more flexibility to allocate natural greenery at broader spatial scales.

  相似文献   

11.
Characterizing the urban environment through urban morphology types (UMTs) can help to decide on what parts of urban areas should be conserved. The aim of this study was to map and detect changes in UMTs and land surface cover in the city of Addis Ababa. UMT maps for 2006 and 2011 were produced by digitizing ortho-rectified aerial photographs. Eleven higher level and 35 detailed UMTs were identified as the basis for the study. Within the defined higher levels of UMTs in 2006, the most dominant UMT was agriculture covering 38 % of the total area while in 2011 residential UMTs stand out with the highest land coverage (33.3 %) indicating rapid conversion of other land uses to residential category. Land surface cover analysis used 12 surface cover categories.Change analysis between 2006 and 2011 revealed that surface cover types of built structure type I (generally well planned and high rise buildings), non-eucalyptus trees, dark bare-ground, light bare-ground and vegetable farm showed positive change whereas built structure type II (informal, generally unplanned, and non-high rise buildings), eucalyptus trees, shrub/bush vegetation, grassland and field crop cover showed negative change. The results also showed that almost half of the land surface cover of Addis Ababa could be considered to be evapotranspiring. To maintain a balanced urban environment, all green spaces in the city should be ecologically networked and the planning of green space should aim to ensure that principles of multi-functionality are followed as the city continues to undergo rapid urbanization.  相似文献   

12.
Variation in densities of native and exotic urban-adapted birds across suburban habitats may reveal levels of adaptation that predict vulnerability to habitat modification over time. We investigated the densities of the eight most common exotic and native birds in a southern hemisphere city across suburbs of varying housing density, vegetative cover and garden vegetation characteristics to determine whether avian population densities are maintained across variations in habitat structure that mirror current temporal trends in land use and landscaping/gardening preferences. We also tested whether densities of birds in residential areas bordering undeveloped patches were higher due to spill-over from patches. Densities of all four native species were highest in undeveloped patches and these species were largely absent from high density housing areas. While densities of two exotic species (blackbird, song thrush) were slightly higher in suburbs with greater vegetation complexity, they were still present in higher density housing suburbs in significant numbers. Common starlings were similarly abundant across all residential habitats and house sparrow density increased in higher density housing areas. Blackbirds appeared least vulnerable to housing densification and landscaping and gardening trends because they were abundant across all habitats, including undeveloped patches. Densities of native birds were higher in residential areas bordering undeveloped patches indicating spill-over was occurring and emphasising the role that patches could play in boosting city-wide native bird abundances. Native birds are vulnerable to reductions in garden size and vegetation complexity that should have little or positive effects on populations of common exotic species.  相似文献   

13.
Urban gardens may support bees by providing resources in otherwise resource-poor environments. However, it is unclear whether urban, backyard gardens with native plants will support more bees than gardens without native plants. We examined backyard gardens in northwestern Ohio to ask: 1) Does bee diversity, abundance, and community composition differ in backyard gardens with and without native plants? 2) What characteristics of backyard gardens and land cover in the surrounding landscape correlate with changes in the bee community? 3) Do bees in backyard gardens respond more strongly to local or landscape factors? We sampled bees with pan trapping, netting, and direct observation. We examined vegetation characteristics and land cover in 500 m, 1 km, and 2 km buffers surrounding each garden. Abundance of all bees, native bees, and cavity-nesting bees (but not ground-nesting bees) was greater in native plant gardens but only richness of cavity-nesting bees differed in gardens with and without native plants. Bee community composition differed in gardens with and without native plants. Overall, bee richness and abundance were positively correlated with local characteristics of backyard gardens, such as increased floral abundance, taller vegetation, more cover by woody plants, less cover by grass, and larger vegetable gardens. Differences in the amount of forest, open space, and wetlands surrounding gardens influenced abundance of cavity- and ground-nesting bees, but at different spatial scales. Thus, presence of native plants, and local and landscape characteristics might play important roles in maintaining bee diversity within urban areas.  相似文献   

14.
Accurate estimates of biomass in urban forests can help improve strategies for enhancing ecosystem services. Landscape heterogeneity, such as land-cover types and their spatial arrangements, greatly affects biomass growth, and it complicates the estimation of biomass. Application of LiDAR data is a typical approach for mapping forest biomass and carbon stocks across heterogeneous landscapes. However, little is known about how urban land uses and pattern impact biomass and estimates derived from LiDAR analysis. In this study, we examined the relationship between LiDAR-derived biomass and dominant land-cover types using field-measured estimates of aboveground forest biomass in an urbanized region of North Carolina, USA. Three objectives drove this research: 1) we examined the local effects of dominant land cover types on urban forest biomass; 2) we identified the spatial scale at which dominant land cover influences biomass estimates; 3) we investigated whether the fine-scale, spatial heterogeneity of the urban landscape contributed to forest biomass. We used multiple linear regression to relate field-measured biomass to LiDAR metrics and land cover densities derived from Landsat and LiDAR data. The biomass model developed from variables derived from LiDAR first returns produced biomass estimates similar to using all LiDAR returns. Although three land-cover types (impervious surface, managed clearings, and farmland) exhibited a negative relationship with biomass, only impervious surface was statistically significant. The biomass model that used impervious surface densities between 100 m and 175 m radial buffers produced the highest adjusted R 2 with lower RMSE values. Our study suggests that impervious surface impacted forest biomass estimates considerably in urbanizing landscapes with the greatest effect between 100 and 175 m from a forest stand. Managed clearing and farmland types negatively impacted biomass estimation albeit not as strongly as impervious surface. Overall, we found that accounting for impervious surface density and its proximity to forest in biomass models may improve urban forest biomass estimates.  相似文献   

15.
Urban environments contain habitats for flowering plants and their pollinating animal species. It is, however, unclear how the urban matrix influences plant-pollinator processes. We recorded plant diversity, floral abundance, flower visitor diversity and plot visits at 89 plant patches within the city of Zürich. The urban matrix surrounding each site was analyzed for the landscape metrics edge density and the extent of green area up to 200 m radius. The correlation between edge density and bee diversity and visitation frequency varied over the entire spatial range, while the correlation for syrphid diversity and visitation frequency levelled off at 80 m radius. In contrast, the correlations with green area were more consistent, with bee diversity levelling off after 100 m, while syrphid diversity and visits continued to increase. The variation in the correlation of bee visits was partly accounted for by the large contribution of honeybees. Plant diversity significantly affected bee diversity and visits, and syrphid visits. Floral abundance had a positive effect on bee visits and bee diversity. Syrphid diversity had a negative interaction with floral abundance and green area. The extent of green area increased bee diversity and visits, and syrphid visits, while edge density reduced visitation by bees. This study showed that plant diversity and floral abundance in urban environments promote pollinating flower visitors. The extent of green area and edge density are important urban mosaic attributes that affect pollinator abundance and visitation frequency at multiple scales.  相似文献   

16.
A serious barrier to our understanding of urban ecosystems is a lack of information on the ecology of soils organisms of green spaces within large cities. This study addresses this gap by providing baseline survey data on the biodiversity of soil macrofauna in urban parks and domestic gardens of London, UK. In April and June 2004, the soil macrofauna were handsorted from soil cores in eleven parks and gardens of various sizes in central London. Five taxa were identified to species (Lumbricidae, Isopoda, Diplopoda, Chilopoda and Formicidae). The biodiversity value of the two main habitats (horticultural borders and mown grass lawns) was assessed and the influence of a range of environmental factors on species density (number of species per unit area) examined. The species densities of the studied soil invertebrates in the urban gardens were comparable with those found in natural ecosystems, although plant borders contained significantly more species than lawns. Borders had higher levels of plant nutrients, higher floristic diversity and lower levels of micronutrients and heavy metals than lawns. Significant predictor variables of species densities in the plant borders were the percentage of leaf litter cover, sampling month and soil pH. Species densities in the lawns were significantly correlated with the distance of the samples from the edge of the lawn.  相似文献   

17.
Coastal vegetation is under increasing pressure with the expansion of urban developments, tourism, population and changing climates. This study sought to examine the effects of fragmentation on the threatened plant community, Coastal Moonah Woodland, in southern Victoria, Australia. We examined the effects on community composition of surrounding land use (urban, rural, native vegetation), remnant size and environmental attributes at three spatial scales. At larger scales, geographic and environmental attributes, such as annual rainfall and temperature, were important drivers of community composition. At finer scales, remnant size, disturbance, weed invasion, connectivity, and immediate surrounding land use impacted more on community composition. At these scales, increasing native vegetation cover in the landscape, remnant connectivity and size positively influenced community composition. If coastal development continues at the current rate, all but a few remnants of this community will be surrounded by the urban landscape. Thus, planning for the integration of these remnants in the urban landscape through long-term management plans and community involvement is essential for the survival of these remnants.  相似文献   

18.
In the United States, residential yards are typically overlooked for biodiversity conservation, yet they account for a significant portion of urban green space. Yard vegetation can serve as valuable habitat patches for insect pollinator populations in cities, providing important foraging and nesting resources. Based on long-term native bee sampling data, we investigate the social and cultural drivers shaping front yard vegetation composition and configuration at two study sites with consistently low native bee species diversity and abundance. We employ quantitative remote sensing approaches with analysis of qualitative interview data to examine residential vegetation patterns and analyze the socio-cultural relationships between people and vegetation. Data analyses reveal both study sites have lower levels of vegetation composition and complexity, resulting in reduced habitat resources. We find neighborhood public-facing landscaping is shaped by various socio-cultural influences: aesthetics, norms, reference-group behavior, institutions, socioeconomics, and identity. Front yard land-use and decision-making practices are particularly meaning laden, as these spaces are often perceived as visible representations of longstanding neighborhood identity and contiguous common areas to be managed to a “perfect lawn” ideal. The quantitative and qualitative data are used to characterize the two study sites and inform future urban conservation and development efforts salient to citizen stakeholders.  相似文献   

19.
In many countries, high densities of domestic cats (Felis catus) are found in urban habitats where they have the potential to exert considerable predation pressure on their prey. However, little is known of the ranging behaviour of cats in the UK. Twenty cats in suburban Reading, UK, were fitted with GPS trackers to quantify movement patterns. Cats were monitored during the summer and winter for an average of 6.8 24 h periods per season. Mean daily area ranged (95 % MCP) was 1.94 ha. Including all fixes, mean maximum area ranged was 6.88 ha. These are broadly comparable to those observed in urban areas in other countries. Daily area ranged was not affected by the cat’s sex or the season, but was significantly larger at night than during the day. There was no relationship between area ranged and habitat availability. Taking available habitat into account, cat ranging area contained significantly more garden and other green space than urban habitats. If cats were shown to be negatively affecting prey populations, one mitigation option for consideration in housing developments proposed near important wildlife sites would be to incorporate a ‘buffer zone’ in which cat ownership was not permitted. Absolute maximum daily area ranged by a cat in this study was 33.78 ha. This would correspond to an exclusory limit of approximately 300–400 m to minimise the negative effects of cat predation, but this may need to be larger if cat ranging behaviour is negatively affected by population density.  相似文献   

20.
As highly managed ecosystems, urban areas should reflect the social characteristics of their managers, who are primarily residents. Since landscape features develop over time, we hypothesize that present-day vegetation should also reflect social characteristics of past residents. Using an urban-to-suburban watershed in the Baltimore Metropolitan Region, this paper examines the relationship between demographics, housing characteristics, and lifestyle clusters from 1960 and 2000 with areas of high woody and herbaceous vegetation cover in 1999. We find that 1960 demographics and age of housing are better predictors of high woody or tree coverage in 1999 than demographics and housing characteristics from 2000. Key variables from 1960 are percent in professional occupations (+), percent of pre-WWI housing (−), percent of post-WWII housing (+), and population density (−). Past and present demographic and housing variables are poor predictors of high herbaceous cover in 1999. Lifestyle clusters for 2000 are very good predictors of high herbaceous coverage in 1999, but lifestyle clusters from 1960 and 2000 are poor predictors of high woody vegetation coverage. These findings suggest that herbaceous or grassy areas, typically lawns, are good reflections of contemporary lifestyle characteristics of residents while neighborhoods with heavy tree canopies have largely inherited the preferred landscapes of past residents and communities. Biological growth time scales of trees and woody vegetation means that such vegetation may outlast the original inhabitants who designed, purchased, and planted them. The landscapes we see today are therefore legacies of past consumption patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号