首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
As the treatments of cancer progress, a certain number of cancers are curable if diagnosed early. In population‐based cancer survival studies, cure is said to occur when mortality rate of the cancer patients returns to the same level as that expected for the general cancer‐free population. The estimates of cure fraction are of interest to both cancer patients and health policy makers. Mixture cure models have been widely used because the model is easy to interpret by separating the patients into two distinct groups. Usually parametric models are assumed for the latent distribution for the uncured patients. The estimation of cure fraction from the mixture cure model may be sensitive to misspecification of latent distribution. We propose a Bayesian approach to mixture cure model for population‐based cancer survival data, which can be extended to county‐level cancer survival data. Instead of modeling the latent distribution by a fixed parametric distribution, we use a finite mixture of the union of the lognormal, loglogistic, and Weibull distributions. The parameters are estimated using the Markov chain Monte Carlo method. Simulation study shows that the Bayesian method using a finite mixture latent distribution provides robust inference of parameter estimates. The proposed Bayesian method is applied to relative survival data for colon cancer patients from the Surveillance, Epidemiology, and End Results (SEER) Program to estimate the cure fractions. The Canadian Journal of Statistics 40: 40–54; 2012 © 2012 Statistical Society of Canada  相似文献   

3.
A general modeling procedure for analyzing genetic data is reviewed. We review ANOVA type model that can handle both the continuous and discrete genetic variables in one modeling framework. Unlike the regression type models which typically set the phenotype variable as a response, this ANOVA model treats the phenotype variable as an explanatory variable. By reversely treating the phenotype variable, usual high dimensional problem is turned into low dimension. Instead, the ANOVA model always includes interaction term between the genetic locations and phenotype variable to find potential association between them. The interaction term is designed to be low rank with the multiplication of bilinear terms so that the required number of parameters is kept in a manageable degree. We compare the performance of the reviewed ANOVA model to the other popular methods via microarray and SNP data sets.  相似文献   

4.
The authors consider Bayesian methods for fitting three semiparametric survival models, incorporating time‐dependent covariates that are step functions. In particular, these are models due to Cox [Cox ( 1972 ) Journal of the Royal Statistical Society, Series B, 34, 187–208], Prentice & Kalbfleisch and Cox & Oakes [Cox & Oakes ( 1984 ) Analysis of Survival Data, Chapman and Hall, London]. The model due to Prentice & Kalbfleisch [Prentice & Kalbfleisch ( 1979 ) Biometrics, 35, 25–39], which has seen very limited use, is given particular consideration. The prior for the baseline distribution in each model is taken to be a mixture of Polya trees and posterior inference is obtained through standard Markov chain Monte Carlo methods. They demonstrate the implementation and comparison of these three models on the celebrated Stanford heart transplant data and the study of the timing of cerebral edema diagnosis during emergency room treatment of diabetic ketoacidosis in children. An important feature of their overall discussion is the comparison of semi‐parametric families, and ultimate criterion based selection of a family within the context of a given data set. The Canadian Journal of Statistics 37: 60–79; © 2009 Statistical Society of Canada  相似文献   

5.
This paper considers the nonparametric inverse probability weighted estimation for functional data with missing response data at random. Under mild conditions, the asymptotic properties of the proposed estimation method are established. Based on the resampling method, the estimation of the asymptotic variance of the proposed estimator is obtained. Finally, the finite sample properties of the proposed estimation method are investigated via Monte Carlo simulation studies. A real data analysis is given to illustrate the use of the proposed method.  相似文献   

6.
Competing risks are common in clinical cancer research, as patients are subject to multiple potential failure outcomes, such as death from the cancer itself or from complications arising from the disease. In the analysis of competing risks, several regression methods are available for the evaluation of the relationship between covariates and cause-specific failures, many of which are based on Cox’s proportional hazards model. Although a great deal of research has been conducted on estimating competing risks, less attention has been devoted to linear regression modeling, which is often referred to as the accelerated failure time (AFT) model in survival literature. In this article, we address the use and interpretation of linear regression analysis with regard to the competing risks problem. We introduce two types of AFT modeling framework, where the influence of a covariate can be evaluated in relation to either a cause-specific hazard function, referred to as cause-specific AFT (CS-AFT) modeling in this study, or the cumulative incidence function of a particular failure type, referred to as crude-risk AFT (CR-AFT) modeling. Simulation studies illustrate that, as in hazard-based competing risks analysis, these two models can produce substantially different effects, depending on the relationship between the covariates and both the failure type of principal interest and competing failure types. We apply the AFT methods to data from non-Hodgkin lymphoma patients, where the dataset is characterized by two competing events, disease relapse and death without relapse, and non-proportionality. We demonstrate how the data can be analyzed and interpreted, using linear competing risks regression models.  相似文献   

7.
In this paper, we mainly study the asymptotic properties of weighted estimator for the nonparametric regression model based on linearly negative quadrant dependent (LNQD, for short) errors. We obtain the rate of uniformly asymptotic normality of the weighted estimator which is nearly O(n?14) when the moment condition is appropriate. The results generalize the corresponding ones of Yang (2003) from NA samples to LNQD samples and improve or extend the corresponding one of Li et al. (2012) for LNQD samples. Moreover, we obtain some results on mean consistency, uniformly mean consistency, and the rate of mean consistency for the weighted estimator. Finally we carry out some simulations to verify the validity of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号