首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we study the maximum likelihood (ML) estimation problem for the parameters of the two-piece (TP) distribution based on the scale mixtures of normal (SMN) distributions. This is a family of skewed distributions that also includes the scales mixtures of normal class, and is flexible enough for modeling symmetric and asymmetric data. The ML estimates of the proposed model parameters are obtained via an expectation-maximization (EM)-type algorithm.  相似文献   

2.
In this article, we propose mixtures of skew Laplace normal (SLN) distributions to model both skewness and heavy-tailedness in the neous data set as an alternative to mixtures of skew Student-t-normal (STN) distributions. We give the expectation–maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators for the parameters of interest. We also analyze the mixture regression model based on the SLN distribution and provide the ML estimators of the parameters using the EM algorithm. The performance of the proposed mixture model is illustrated by a simulation study and two real data examples.  相似文献   

3.
We propose here a robust multivariate extension of the bivariate Birnbaum–Saunders (BS) distribution derived by Kundu et al. [Bivariate Birnbaum–Saunders distribution and associated inference. J Multivariate Anal. 2010;101:113–125], based on scale mixtures of normal (SMN) distributions that are used for modelling symmetric data. This resulting multivariate BS-type distribution is an absolutely continuous distribution whose marginal and conditional distributions are of BS-type distribution of Balakrishnan et al. [Estimation in the Birnbaum–Saunders distribution based on scalemixture of normals and the EM algorithm. Stat Oper Res Trans. 2009;33:171–192]. Due to the complexity of the likelihood function, parameter estimation by direct maximization is very difficult to achieve. For this reason, we exploit the nice hierarchical representation of the proposed distribution to propose a fast and accurate EM algorithm for computing the maximum likelihood (ML) estimates of the model parameters. We then evaluate the finite-sample performance of the developed EM algorithm and the asymptotic properties of the ML estimates through empirical experiments. Finally, we illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.  相似文献   

4.
Finite mixtures of multivariate skew t (MST) distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour. Recently, they have been exploited as an effective tool for modelling flow cytometric data. A number of algorithms for the computation of the maximum likelihood (ML) estimates for the model parameters of mixtures of MST distributions have been put forward in recent years. These implementations use various characterizations of the MST distribution, which are similar but not identical. While exact implementation of the expectation-maximization (EM) algorithm can be achieved for ‘restricted’ characterizations of the component skew t-distributions, Monte Carlo (MC) methods have been used to fit the ‘unrestricted’ models. In this paper, we review several recent fitting algorithms for finite mixtures of multivariate skew t-distributions, at the same time clarifying some of the connections between the various existing proposals. In particular, recent results have shown that the EM algorithm can be implemented exactly for faster computation of ML estimates for mixtures with unrestricted MST components. The gain in computational time is effected by noting that the semi-infinite integrals on the E-step of the EM algorithm can be put in the form of moments of the truncated multivariate non-central t-distribution, similar to the restricted case, which subsequently can be expressed in terms of the non-truncated form of the central t-distribution function for which fast algorithms are available. We present comparisons to illustrate the relative performance of the restricted and unrestricted models, and demonstrate the usefulness of the recently proposed methodology for the unrestricted MST mixture, by some applications to three real datasets.  相似文献   

5.
Skew scale mixtures of normal distributions are often used for statistical procedures involving asymmetric data and heavy-tailed. The main virtue of the members of this family of distributions is that they are easy to simulate from and they also supply genuine expectation-maximization (EM) algorithms for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models and we develop diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach cannot be used to obtain measures of local influence. The EM-type algorithm has been discussed with an emphasis on the skew Student-t-normal, skew slash, skew-contaminated normal and skew power-exponential distributions. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

6.
In the present paper we examine finite mixtures of multivariate Poisson distributions as an alternative class of models for multivariate count data. The proposed models allow for both overdispersion in the marginal distributions and negative correlation, while they are computationally tractable using standard ideas from finite mixture modelling. An EM type algorithm for maximum likelihood (ML) estimation of the parameters is developed. The identifiability of this class of mixtures is proved. Properties of ML estimators are derived. A real data application concerning model based clustering for multivariate count data related to different types of crime is presented to illustrate the practical potential of the proposed class of models.  相似文献   

7.
A developmental trajectory describes the course of behavior over time. Identifying multiple trajectories within an overall developmental process permits a focus on subgroups of particular interest. We introduce a framework for identifying trajectories by using the Expectation-Maximization (EM) algorithm to fit semiparametric mixtures of logistic distributions to longitudinal binary data. For performance comparison, we consider full maximization algorithms (PROC TRAJ in SAS), standard EM, and two other EM-based algorithms for speeding up convergence. Simulation shows that EM methods produce more accurate parameter estimates. The EM methodology is illustrated with a longitudinal dataset involving adolescents smoking behaviors.  相似文献   

8.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies.  相似文献   

9.
We propose a new methodology for maximum likelihood estimation in mixtures of non linear mixed effects models (NLMEM). Such mixtures of models include mixtures of distributions, mixtures of structural models and mixtures of residual error models. Since the individual parameters inside the NLMEM are not observed, we propose to combine the EM algorithm usually used for mixtures models when the mixture structure concerns an observed variable, with the Stochastic Approximation EM (SAEM) algorithm, which is known to be suitable for maximum likelihood estimation in NLMEM and also has nice theoretical properties. The main advantage of this hybrid procedure is to avoid a simulation step of unknown group labels required by a “full” version of SAEM. The resulting MSAEM (Mixture SAEM) algorithm is now implemented in the Monolix software. Several criteria for classification of subjects and estimation of individual parameters are also proposed. Numerical experiments on simulated data show that MSAEM performs well in a general framework of mixtures of NLMEM. Indeed, MSAEM provides an estimator close to the maximum likelihood estimator in very few iterations and is robust with regard to initialization. An application to pharmacokinetic (PK) data demonstrates the potential of the method for practical applications.  相似文献   

10.
Multivariate mixtures of Erlang distributions form a versatile, yet analytically tractable, class of distributions making them suitable for multivariate density estimation. We present a flexible and effective fitting procedure for multivariate mixtures of Erlangs, which iteratively uses the EM algorithm, by introducing a computationally efficient initialization and adjustment strategy for the shape parameter vectors. We furthermore extend the EM algorithm for multivariate mixtures of Erlangs to be able to deal with randomly censored and fixed truncated data. The effectiveness of the proposed algorithm is demonstrated on simulated as well as real data sets.  相似文献   

11.
Aiming to avoid the sensitivity in the parameters estimation due to atypical observations or skewness, we develop asymmetric nonlinear regression models with mixed-effects, which provide alternatives to the use of normal distribution and other symmetric distributions. Nonlinear models with mixed-effects are explored in several areas of knowledge, especially when data are correlated, such as longitudinal data, repeated measures and multilevel data, in particular, for their flexibility in dealing with measures of areas such as economics and pharmacokinetics. The random components of the present model are assumed to follow distributions that belong to scale mixtures of skew-normal (SMSN) distribution family, that encompasses distributions with light and heavy tails, such as skew-normal, skew-Student-t, skew-contaminated normal and skew-slash, as well as symmetrical versions of these distributions. For the parameters estimation we obtain a numerical solution via the EM algorithm and its extensions, and the Newton-Raphson algorithm. An application with pharmacokinetic data shows the superiority of the proposed models, for which the skew-contaminated normal distribution has shown to be the most adequate distribution. A brief simulation study points to good properties of the parameter vector estimators obtained by the maximum likelihood method.  相似文献   

12.
Nonlinear mixed-effects models are very useful to analyze repeated measures data and are used in a variety of applications. Normal distributions for random effects and residual errors are usually assumed, but such assumptions make inferences vulnerable to the presence of outliers. In this work, we introduce an extension of a normal nonlinear mixed-effects model considering a subclass of elliptical contoured distributions for both random effects and residual errors. This elliptical subclass, the scale mixtures of normal (SMN) distributions, includes heavy-tailed multivariate distributions, such as Student-t, the contaminated normal and slash, among others, and represents an interesting alternative to outliers accommodation maintaining the elegance and simplicity of the maximum likelihood theory. We propose an exact estimation procedure to obtain the maximum likelihood estimates of the fixed-effects and variance components, using a stochastic approximation of the EM algorithm. We compare the performance of the normal and the SMN models with two real data sets.  相似文献   

13.
A progressive hybrid censoring scheme is a mixture of type-I and type-II progressive censoring schemes. In this paper, we mainly consider the analysis of progressive type-II hybrid-censored data when the lifetime distribution of the individual item is the normal and extreme value distributions. Since the maximum likelihood estimators (MLEs) of these parameters cannot be obtained in the closed form, we propose to use the expectation and maximization (EM) algorithm to compute the MLEs. Also, the Newton–Raphson method is used to estimate the model parameters. The asymptotic variance–covariance matrix of the MLEs under EM framework is obtained by Fisher information matrix using the missing information and asymptotic confidence intervals for the parameters are then constructed. This study will end up with comparing the two methods of estimation and the asymptotic confidence intervals of coverage probabilities corresponding to the missing information principle and the observed information matrix through a simulation study, illustrated examples and real data analysis.  相似文献   

14.
Markov chain Monte Carlo (MCMC) algorithms have been shown to be useful for estimation of complex item response theory (IRT) models. Although an MCMC algorithm can be very useful, it also requires care in use and interpretation of results. In particular, MCMC algorithms generally make extensive use of priors on model parameters. In this paper, MCMC estimation is illustrated using a simple mixture IRT model, a mixture Rasch model (MRM), to demonstrate how the algorithm operates and how results may be affected by some commonly used priors. Priors on the probabilities of mixtures, label switching, model selection, metric anchoring, and implementation of the MCMC algorithm using WinBUGS are described, and their effects illustrated on parameter recovery in practical testing situations. In addition, an example is presented in which an MRM is fitted to a set of educational test data using the MCMC algorithm and a comparison is illustrated with results from three existing maximum likelihood estimation methods.  相似文献   

15.
In this article, by using the constant and random selection matrices, several properties of the maximum likelihood (ML) estimates and the ML estimator of a normal distribution with missing data are derived. The constant selection matrix allows us to obtain an explicit form of the ML estimates and the exact relationship between the EM algorithm and the score function. The random selection matrix allows us to clarify how the missing-data mechanism works in the proof of the consistency of the ML estimator, to derive the asymptotic properties of the sequence by the EM algorithm, and to derive the information matrix.  相似文献   

16.
This paper presents an EM algorithm for maximum likelihood estimation in generalized linear models with overdispersion. The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully non-parametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters may be sensitive to the specification of a parametric form for the mixing distribution. A listing of a GLIM4 algorithm for fitting the overdispersed binomial logit model is given in an appendix.A simple method is given for obtaining correct standard errors for parameter estimates when using the EM algorithm.Several examples are discussed.  相似文献   

17.
Matrix-variate distributions represent a natural way for modeling random matrices. Realizations from random matrices are generated by the simultaneous observation of variables in different situations or locations, and are commonly arranged in three-way data structures. Among the matrix-variate distributions, the matrix normal density plays the same pivotal role as the multivariate normal distribution in the family of multivariate distributions. In this work we define and explore finite mixtures of matrix normals. An EM algorithm for the model estimation is developed and some useful properties are demonstrated. We finally show that the proposed mixture model can be a powerful tool for classifying three-way data both in supervised and unsupervised problems. A simulation study and some real examples are presented.  相似文献   

18.
In this work, we develop some diagnostics for nonlinear regression model with scale mixtures of skew-normal (SMSN) and first-order autoregressive errors. The SMSN distribution class covers symmetric as well as asymmetric and heavy-tailed distributions, which offers a more flexible framework for modelling. Maximum-likelihood (ML) estimates are computed via an expectation–maximization-type algorithm. Local influence diagnostics and score test for the correlation are also derived. The performances of the ML estimates and the test statistic are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods.  相似文献   

19.
The family of power series cure rate models provides a flexible modeling framework for survival data of populations with a cure fraction. In this work, we present a simplified estimation procedure for the maximum likelihood (ML) approach. ML estimates are obtained via the expectation-maximization (EM) algorithm where the expectation step involves computation of the expected number of concurrent causes for each individual. It has the big advantage that the maximization step can be decomposed into separate maximizations of two lower-dimensional functions of the regression and survival distribution parameters, respectively. Two simulation studies are performed: the first to investigate the accuracy of the estimation procedure for different numbers of covariates and the second to compare our proposal with the direct maximization of the observed log-likelihood function. Finally, we illustrate the technique for parameter estimation on a dataset of survival times for patients with malignant melanoma.  相似文献   

20.
This article applies the EM-based (ECM and ECME) algorithms to find the maximum likelihood estimates of model parameters in general AR models with independent scaled t-distributed innovations whenever the degrees of freedom are unknown. The ECME, sharing advantages with both EM and Newton–Raphson algorithms, is an extension of ECM, which itself is an extension of the EM algorithm. The ECM and ECME algorithms, which are analytically quite simple to use, are then compared based on the computational running time and the accuracy of estimation via a simulation study. The results demonstrate that the ECME is efficient and usable in practice. We also show how our method can be applied to the Wolfer's sunspot data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号