首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a density-tempered marginalized sequential Monte Carlo (SMC) sampler, a new class of samplers for full Bayesian inference of general state-space models. The dynamic states are approximately marginalized out using a particle filter, and the parameters are sampled via a sequential Monte Carlo sampler over a density-tempered bridge between the prior and the posterior. Our approach delivers exact draws from the joint posterior of the parameters and the latent states for any given number of state particles and is thus easily parallelizable in implementation. We also build into the proposed method a device that can automatically select a suitable number of state particles. Since the method incorporates sample information in a smooth fashion, it delivers good performance in the presence of outliers. We check the performance of the density-tempered SMC algorithm using simulated data based on a linear Gaussian state-space model with and without misspecification. We also apply it on real stock prices using a GARCH-type model with microstructure noise.  相似文献   

2.
This paper discusses a novel strategy for simulating rare events and an associated Monte Carlo estimation of tail probabilities. Our method uses a system of interacting particles and exploits a Feynman-Kac representation of that system to analyze their fluctuations. Our precise analysis of the variance of a standard multilevel splitting algorithm reveals an opportunity for improvement. This leads to a novel method that relies on adaptive levels and produces, in the limit of an idealized version of the algorithm, estimates with optimal variance. The motivation for this theoretical work comes from problems occurring in watermarking and fingerprinting of digital contents, which represents a new field of applications of rare event simulation techniques. Some numerical results show performance close to the idealized version of our technique for these practical applications.  相似文献   

3.
A Monte Carlo algorithm is said to be adaptive if it automatically calibrates its current proposal distribution using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for good performance. In this paper, we present such a parametric family for adaptive sampling on high dimensional binary spaces. A practical motivation for this problem is variable selection in a linear regression context. We want to sample from a Bayesian posterior distribution on the model space using an appropriate version of Sequential Monte Carlo. Raw versions of Sequential Monte Carlo are easily implemented using binary vectors with independent components. For high dimensional problems, however, these simple proposals do not yield satisfactory results. The key to an efficient adaptive algorithm are binary parametric families which take correlations into account, analogously to the multivariate normal distribution on continuous spaces. We provide a review of models for binary data and make one of them work in the context of Sequential Monte Carlo sampling. Computational studies on real life data with about a hundred covariates suggest that, on difficult instances, our Sequential Monte Carlo approach clearly outperforms standard techniques based on Markov chain exploration.  相似文献   

4.
In this paper we describe a sequential importance sampling (SIS) procedure for counting the number of vertex covers in general graphs. The optimal SIS proposal distribution is the uniform over a suitably restricted set, but is not implementable. We will consider two proposal distributions as approximations to the optimal. Both proposals are based on randomization techniques. The first randomization is the classic probability model of random graphs, and in fact, the resulting SIS algorithm shows polynomial complexity for random graphs. The second randomization introduces a probabilistic relaxation technique that uses Dynamic Programming. The numerical experiments show that the resulting SIS algorithm enjoys excellent practical performance in comparison with existing methods. In particular the method is compared with cachet—an exact model counter, and the state of the art SampleSearch, which is based on Belief Networks and importance sampling.  相似文献   

5.
Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.  相似文献   

6.
This article serves as an introduction and survey for economists to the field of sequential Monte Carlo methods which are also known as particle filters. Sequential Monte Carlo methods are simulation-based algorithms used to compute the high-dimensional and/or complex integrals that arise regularly in applied work. These methods are becoming increasingly popular in economics and finance; from dynamic stochastic general equilibrium models in macro-economics to option pricing. The objective of this article is to explain the basics of the methodology, provide references to the literature, and cover some of the theoretical results that justify the methods in practice.  相似文献   

7.
There are two conceptually distinct tasks in Markov chain Monte Carlo (MCMC): a sampler is designed for simulating a Markov chain and then an estimator is constructed on the Markov chain for computing integrals and expectations. In this article, we aim to address the second task by extending the likelihood approach of Kong et al. for Monte Carlo integration. We consider a general Markov chain scheme and use partial likelihood for estimation. Basically, the Markov chain scheme is treated as a random design and a stratified estimator is defined for the baseline measure. Further, we propose useful techniques including subsampling, regulation, and amplification for achieving overall computational efficiency. Finally, we introduce approximate variance estimators for the point estimators. The method can yield substantially improved accuracy compared with Chib's estimator and the crude Monte Carlo estimator, as illustrated with three examples.  相似文献   

8.
Software packages usually report the results of statistical tests using p-values. Users often interpret these values by comparing them with standard thresholds, for example, 0.1, 1, and 5%, which is sometimes reinforced by a star rating (***, **, and *, respectively). We consider an arbitrary statistical test whose p-value p is not available explicitly, but can be approximated by Monte Carlo samples, for example, by bootstrap or permutation tests. The standard implementation of such tests usually draws a fixed number of samples to approximate p. However, the probability that the exact and the approximated p-value lie on different sides of a threshold (the resampling risk) can be high, particularly for p-values close to a threshold. We present a method to overcome this. We consider a finite set of user-specified intervals that cover [0, 1] and that can be overlapping. We call these p-value buckets. We present algorithms that, with arbitrarily high probability, return a p-value bucket containing p. We prove that for both a bounded resampling risk and a finite runtime, overlapping buckets need to be employed, and that our methods both bound the resampling risk and guarantee a finite runtime for such overlapping buckets. To interpret decisions with overlapping buckets, we propose an extension of the star rating system. We demonstrate that our methods are suitable for use in standard software, including for low p-value thresholds occurring in multiple testing settings, and that they can be computationally more efficient than standard implementations.  相似文献   

9.
Abstract

Conventional methods for statistical hypothesis testing has historically been categorized as frequentist or Bayesian. But, a third option based on a reconciling hybrid frequentist-Bayesian framework is quickly emerging. Although prominent, there are applications where the exact hybrid test is not computable. For such cases, the present paper introduces a straightforward Monte Carlo procedure for performing frequentist-Bayesian testing.  相似文献   

10.
We show how the Hamiltonian Monte Carlo algorithm can sometimes be speeded up by “splitting” the Hamiltonian in a way that allows much of the movement around the state space to be done at low computational cost. One context where this is possible is when the log density of the distribution of interest (the potential energy function) can be written as the log of a Gaussian density, which is a quadratic function, plus a slowly-varying function. Hamiltonian dynamics for quadratic energy functions can be analytically solved. With the splitting technique, only the slowly-varying part of the energy needs to be handled numerically, and this can be done with a larger stepsize (and hence fewer steps) than would be necessary with a direct simulation of the dynamics. Another context where splitting helps is when the most important terms of the potential energy function and its gradient can be evaluated quickly, with only a slowly-varying part requiring costly computations. With splitting, the quick portion can be handled with a small stepsize, while the costly portion uses a larger stepsize. We show that both of these splitting approaches can reduce the computational cost of sampling from the posterior distribution for a logistic regression model, using either a Gaussian approximation centered on the posterior mode, or a Hamiltonian split into a term that depends on only a small number of critical cases, and another term that involves the larger number of cases whose influence on the posterior distribution is small.  相似文献   

11.
Park  Joonha  Atchadé  Yves 《Statistics and Computing》2020,30(5):1325-1345

We explore a general framework in Markov chain Monte Carlo (MCMC) sampling where sequential proposals are tried as a candidate for the next state of the Markov chain. This sequential-proposal framework can be applied to various existing MCMC methods, including Metropolis–Hastings algorithms using random proposals and methods that use deterministic proposals such as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler. Sequential-proposal MCMC methods construct the same Markov chains as those constructed by the delayed rejection method under certain circumstances. In the context of HMC, the sequential-proposal approach has been proposed as extra chance generalized hybrid Monte Carlo (XCGHMC). We develop two novel methods in which the trajectories leading to proposals in HMC are automatically tuned to avoid doubling back, as in the No-U-Turn sampler (NUTS). The numerical efficiency of these new methods compare favorably to the NUTS. We additionally show that the sequential-proposal bouncy particle sampler enables the constructed Markov chain to pass through regions of low target density and thus facilitates better mixing of the chain when the target density is multimodal.

  相似文献   

12.
Ensemble forecasting involves the use of several integrations of a numerical model. Even if this model is assumed to be known, ensembles are needed due to uncertainty in initial conditions. The ideas discussed in this paper incorporate aspects of both analytic model approximations and Monte Carlo arguments to gain some efficiency in the generation and use of ensembles. Efficiency is gained through the use of importance sampling Monte Carlo. Once ensemble members are generated, suggestions for their use, involving both approximation and statistical notions such as kernel density estimation and mixture modeling are discussed. Fully deterministic procedures derived from the Monte Carlo analysis are also described. Examples using the three-dimensional Lorenz system are described.  相似文献   

13.
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form \(X = g(\mathbf {U})\) where g is a deterministic function and \(\mathbf {U}\) can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists \(k \in \mathbb {R}> 1\) such that \({\text {E}}\left[ X^k \right] < \infty \). Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.  相似文献   

14.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

15.
16.
Efficient Markov chain Monte Carlo with incomplete multinomial data   总被引:1,自引:0,他引:1  
We propose a block Gibbs sampling scheme for incomplete multinomial data. We show that the new approach facilitates maximal blocking, thereby reducing serial dependency and speeding up the convergence of the Gibbs sampler. We compare the efficiency of the new method with the standard, non-block Gibbs sampler via a number of numerical examples.  相似文献   

17.
Parallelizable Markov chain Monte Carlo (MCMC) generates multiple proposals and parallelizes the evaluations of the likelihood function on different cores at each MCMC iteration. Inspired by Calderhead (Proc Natl Acad Sci 111(49):17408–17413, 2014), we introduce a general ‘waste-recycling’ framework for parallelizable MCMC, under which we show that using weighted samples from waste-recycling is preferable to resampling in terms of both statistical and computational efficiencies. We also provide a simple-to-use criteria, the generalized effective sample size, for evaluating efficiencies of parallelizable MCMC algorithms, which applies to both the waste-recycling and the vanilla versions. A moment estimator of the generalized effective sample size is provided and shown to be reasonably accurate by simulations.  相似文献   

18.
Some statistical models defined in terms of a generating stochastic mechanism have intractable distribution theory, which renders parameter estimation difficult. However, a Monte Carlo estimate of the log-likelihood surface for such a model can be obtained via computation of nonparametric density estimates from simulated realizations of the model. Unfortunately, the bias inherent in density estimation can cause bias in the resulting log-likelihood estimate that alters the location of its maximizer. In this paper a methodology for radically reducing this bias is developed for models with an additive error component. An illustrative example involving a stochastic model of molecular fragmentation and measurement is given.  相似文献   

19.
In this article we propose a nonparametric test for poolability in large dimensional semiparametric panel data models with cross-section dependence based on the sieve estimation technique. To construct the test statistic, we only need to estimate the model under the alternative. We establish the asymptotic normal distributions of our test statistic under the null hypothesis of poolability and a sequence of local alternatives, and prove the consistency of our test. We also suggest a bootstrap method as an alternative way to obtain the critical values. A small set of Monte Carlo simulations indicate the test performs reasonably well in finite samples.  相似文献   

20.
We consider the problem of adjusting a machine that manufactures parts in batches or lots and experiences random offsets or shifts whenever a set-up operation takes place between lots. The existing procedures for adjusting set-up errors in a production process over a set of lots are based on the assumption of known process parameters. In practice, these parameters are usually unknown, especially in short-run production. Due to this lack of knowledge, adjustment procedures such as Grubbs' (1954, 1983) rules and discrete integral controllers (also called EWMA controllers) aimed at adjusting for the initial offset in each single lot, are typically used. This paper presents an approach for adjusting the initial machine offset over a set of lots when the process parameters are unknown and are iteratively estimated using Markov Chain Monte Carlo (MCMC). As each observation becomes available, a Gibbs Sampler is run to estimate the parameters of a hierarchical normal means model given the observations up to that point in time. The current lot mean estimate is then used for adjustment. If used over a series of lots, the proposed method allows one eventually to start adjusting the offset before producing the first part in each lot. The method is illustrated with application to two examples reported in the literature. It is shown how the proposed MCMC adjusting procedure can outperform existing rules based on a quadratic off-target criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号