首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This article is concerned with feature screening for the ultrahigh dimensional discriminant analysis. A variance ratio screening method is proposed and the sure screening property of this screening procedure is proved. The proposed method has some additional desirable features. First, it is model-free which does not require specific discriminant model and can be directly applied to the multi-categories situation. Second, it can effectively screen main effects and interaction effects simultaneously. Third, it is relatively inexpensive in computational cost because of the simple structure. The finite sample properties are performed through the Monte Carlo simulation studies and two real-data analyses.  相似文献   

2.
Ultrahigh dimensional data with both categorical responses and categorical covariates are frequently encountered in the analysis of big data, for which feature screening has become an indispensable statistical tool. We propose a Pearson chi-square based feature screening procedure for categorical response with ultrahigh dimensional categorical covariates. The proposed procedure can be directly applied for detection of important interaction effects. We further show that the proposed procedure possesses screening consistency property in the terminology of Fan and Lv (2008). We investigate the finite sample performance of the proposed procedure by Monte Carlo simulation studies and illustrate the proposed method by two empirical datasets.  相似文献   

3.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

4.
It is quite a challenge to develop model‐free feature screening approaches for missing response problems because the existing standard missing data analysis methods cannot be applied directly to high dimensional case. This paper develops some novel methods by borrowing information of missingness indicators such that any feature screening procedures for ultrahigh‐dimensional covariates with full data can be applied to missing response case. The first method is the so‐called missing indicator imputation screening, which is developed by proving that the set of the active predictors of interest for the response is a subset of the active predictors for the product of the response and missingness indicator under some mild conditions. As an alternative, another method called Venn diagram‐based approach is also developed. The sure screening property is proven for both methods. It is shown that the complete case analysis can also keep the sure screening property of any feature screening approach with sure screening property.  相似文献   

5.
This paper is concerned with the conditional feature screening for ultra-high dimensional right censored data with some previously identified important predictors. A new model-free conditional feature screening approach, conditional correlation rank sure independence screening, has been proposed and investigated theoretically. The suggested conditional screening procedure has several desirable merits. First, it is model free, and thus robust to model misspecification. Second, it has the advantage of robustness of heavy-tailed distributions of the response and the presence of potential outliers in response. Third, it is naturally applicable to complete data when there is no censoring. Through simulation studies, we demonstrate that the proposed approach outperforms the CoxCS of Hong et al. under some circumstances. A real dataset is used to illustrate the usefulness of the proposed conditional screening method.  相似文献   

6.
Most feature screening methods for ultrahigh-dimensional classification explicitly or implicitly assume the covariates are continuous. However, in the practice, it is quite common that both categorical and continuous covariates appear in the data, and applicable feature screening method is very limited. To handle this non-trivial situation, we propose an entropy-based feature screening method, which is model free and provides a unified screening procedure for both categorical and continuous covariates. We establish the sure screening and ranking consistency properties of the proposed procedure. We investigate the finite sample performance of the proposed procedure by simulation studies and illustrate the method by a real data analysis.  相似文献   

7.
In this paper, we consider sure independence feature screening for ultrahigh dimensional discriminant analysis. We propose a new method named robust rank screening based on the conditional expectation of the rank of predictor’s samples. We also establish the sure screening property for the proposed procedure under simple assumptions. The new procedure has some additional desirable characters. First, it is robust against heavy-tailed distributions, potential outliers and the sample shortage for some categories. Second, it is model-free without any specification of a regression model and directly applicable to the situation with many categories. Third, it is simple in theoretical derivation due to the boundedness of the resulting statistics. Forth, it is relatively inexpensive in computational cost because of the simple structure of the screening index. Monte Carlo simulations and real data examples are used to demonstrate the finite sample performance.  相似文献   

8.
Case‐cohort design has been demonstrated to be an economical and efficient approach in large cohort studies when the measurement of some covariates on all individuals is expensive. Various methods have been proposed for case‐cohort data when the dimension of covariates is smaller than sample size. However, limited work has been done for high‐dimensional case‐cohort data which are frequently collected in large epidemiological studies. In this paper, we propose a variable screening method for ultrahigh‐dimensional case‐cohort data under the framework of proportional model, which allows the covariate dimension increases with sample size at exponential rate. Our procedure enjoys the sure screening property and the ranking consistency under some mild regularity conditions. We further extend this method to an iterative version to handle the scenarios where some covariates are jointly important but are marginally unrelated or weakly correlated to the response. The finite sample performance of the proposed procedure is evaluated via both simulation studies and an application to a real data from the breast cancer study.  相似文献   

9.
In recent years, numerous feature screening schemes have been developed for ultra-high dimensional standard survival data with only one failure event. Nevertheless, existing literature pays little attention to related investigations for competing risks data, in which subjects suffer from multiple mutually exclusive failures. In this article, we develop a new marginal feature screening for ultra-high dimensional time-to-event data to allow for competing risks. The proposed procedure is model-free, and robust against heavy-tailed distributions and potential outliers for time to the type of failure of interest. Apart from this, it is invariant to any monotone transformation of event time of interest. Under rather mild assumptions, it is shown that the newly suggested approach possesses the ranking consistency and sure independence screening properties. Some numerical studies are conducted to evaluate the finite-sample performance of our method and make a comparison with its competitor, while an application to a real data set is provided to serve as an illustration.  相似文献   

10.
Ultra-high dimensional data arise in many fields of modern science, such as medical science, economics, genomics and imaging processing, and pose unprecedented challenge for statistical analysis. With such rapid-growth size of scientific data in various disciplines, feature screening becomes a primary step to reduce the high dimensionality to a moderate scale that can be handled by the existing penalized methods. In this paper, we introduce a simple and robust feature screening method without any model assumption to tackle high dimensional censored data. The proposed method is model-free and hence applicable to a general class of survival models. The sure screening and ranking consistency properties without any finite moment condition of the predictors and the response are established. The computation of the proposed method is rather straightforward. Finite sample performance of the newly proposed method is examined via extensive simulation studies. An application is illustrated with the gene association study of the mantle cell lymphoma.  相似文献   

11.
We introduce a two-step procedure, in the context of ultra-high dimensional additive models, which aims to reduce the size of covariates vector and distinguish linear and nonlinear effects among nonzero components. Our proposed screening procedure, in the first step, is constructed based on the concept of cumulative distribution function and conditional expectation of response in the framework of marginal correlation. B-splines and empirical distribution functions are used to estimate the two above measures. The sure screening property of this procedure is also established. In the second step, a double penalization based procedure is applied to identify nonzero and linear components, simultaneously. The performance of the designed method is examined by several test functions to show its capabilities against competitor methods when the distribution of errors is varied. Simulation studies imply that the proposed screening procedure can be applied to the ultra-high dimensional data and well detect the influential covariates. It also demonstrate the superiority in comparison with the existing methods. This method is also applied to identify most influential genes for overexpression of a G protein-coupled receptor in mice.  相似文献   

12.
In this paper, we consider the ultrahigh-dimensional sufficient dimension reduction (SDR) for censored data and measurement error in covariates. We first propose the feature screening procedure based on censored data and the covariates subject to measurement error. With the suitable correction of mismeasurement, the error-contaminated variables detected by the proposed feature screening procedure are the same as the truly important variables. Based on the selected active variables, we develop the SDR method to estimate the central subspace and the structural dimension with both censored data and measurement error incorporated. The theoretical results of the proposed method are established. Simulation studies are reported to assess the performance of the proposed method. The proposed method is implemented to NKI breast cancer data.  相似文献   

13.
In this paper we design a sure independent ranking and screening procedure for censored regression (cSIRS, for short) with ultrahigh dimensional covariates. The inverse probability weighted cSIRS procedure is model-free in the sense that it does not specify a parametric or semiparametric regression function between the response variable and the covariates. Thus, it is robust to model mis-specification. This model-free property is very appealing in ultrahigh dimensional data analysis, particularly when there is lack of information for the underlying regression structure. The cSIRS procedure is also robust in the presence of outliers or extreme values as it merely uses the rank of the censored response variable. We establish both the sure screening and the ranking consistency properties for the cSIRS procedure when the number of covariates p satisfies \(p=o\{\exp (an)\}\), where a is a positive constant and n is the available sample size. The advantages of cSIRS over existing competitors are demonstrated through comprehensive simulations and an application to the diffuse large-B-cell lymphoma data set.  相似文献   

14.
In this paper, we propose a conditional quantile independence screening approach for ultra-high-dimensional heterogeneous data given some known, significant and low-dimensional variables. The new method does not require imposing a specific model structure for the response and covariates and can detect additional features that contribute to conditional quantiles of the response given those already-identified important predictors. We also prove that the proposed procedure enjoys the ranking consistency and sure screening properties. Some simulation studies are carried out to examine the performance of advised procedure. At last, we illustrate it by a real data example.  相似文献   

15.
Feature screening and variable selection are fundamental in analysis of ultrahigh-dimensional data, which are being collected in diverse scientific fields at relatively low cost. Distance correlation-based sure independence screening (DC-SIS) has been proposed to perform feature screening for ultrahigh-dimensional data. The DC-SIS possesses sure screening property and filters out unimportant predictors in a model-free manner. Like all independence screening methods, however, it fails to detect the truly important predictors which are marginally independent of the response variable due to correlations among predictors. When there are many irrelevant predictors which are highly correlated with some strongly active predictors, the independence screening may miss other active predictors with relatively weak marginal signals. To improve the performance of DC-SIS, we introduce an effective iterative procedure based on distance correlation to detect all truly important predictors and potentially interactions in both linear and nonlinear models. Thus, the proposed iterative method possesses the favourable model-free and robust properties. We further illustrate its excellent finite-sample performance through comprehensive simulation studies and an empirical analysis of the rat eye expression data set.  相似文献   

16.
The varying-coefficient model is an important nonparametric statistical model since it allows appreciable flexibility on the structure of fitted model. For ultra-high dimensional heterogeneous data it is very necessary to examine how the effects of covariates vary with exposure variables at different quantile level of interest. In this paper, we extended the marginal screening methods to examine and select variables by ranking a measure of nonparametric marginal contributions of each covariate given the exposure variable. Spline approximations are employed to model marginal effects and select the set of active variables in quantile-adaptive framework. This ensures the sure screening property in quantile-adaptive varying-coefficient model. Numerical studies demonstrate that the proposed procedure works well for heteroscedastic data.  相似文献   

17.
Variance estimation is a fundamental problem in statistical modelling. In ultrahigh dimensional linear regression where the dimensionality is much larger than the sample size, traditional variance estimation techniques are not applicable. Recent advances in variable selection in ultrahigh dimensional linear regression make this problem accessible. One of the major problems in ultrahigh dimensional regression is the high spurious correlation between the unobserved realized noise and some of the predictors. As a result, the realized noises are actually predicted when extra irrelevant variables are selected, leading to serious underestimate of the level of noise. We propose a two-stage refitted procedure via a data splitting technique, called refitted cross-validation, to attenuate the influence of irrelevant variables with high spurious correlations. Our asymptotic results show that the resulting procedure performs as well as the oracle estimator, which knows in advance the mean regression function. The simulation studies lend further support to our theoretical claims. The naive two-stage estimator and the plug-in one-stage estimators using the lasso and smoothly clipped absolute deviation are also studied and compared. Their performances can be improved by the reffitted cross-validation method proposed.  相似文献   

18.
In practice, the presence of influential observations may lead to misleading results in variable screening problems. We, therefore, propose a robust variable screening procedure for high-dimensional data analysis in this paper. Our method consists of two steps. The first step is to define a new high-dimensional influence measure and propose a novel influence diagnostic procedure to remove those unusual observations. The second step is to utilize the sure independence screening procedure based on distance correlation to select important variables in high-dimensional regression analysis. The new influence measure and diagnostic procedure that we developed are model free. To confirm the effectiveness of the proposed method, we conduct simulation studies and a real-life data analysis to illustrate the merits of the proposed approach over some competing methods. Both the simulation results and the real-life data analysis demonstrate that the proposed method can greatly control the adverse effect after detecting and removing those unusual observations, and performs better than the competing methods.  相似文献   

19.
In this article, a new model-free feature screening method named after probability density (mass) function distance (PDFD) correlation is presented for ultrahigh-dimensional data analysis. We improve the fused-Kolmogorov filter (F-KOL) screening procedure through probability density distribution. The proposed method is also fully nonparametric and can be applied to more general types of predictors and responses, including discrete and continuous random variables. Kernel density estimate method and numerical integration are applied to obtain the estimator we proposed. The results of simulation studies indicate that the fused-PDFD performs better than other existing screening methods, such as F-KOL filter, sure-independent screening (SIS), sure independent ranking and screening (SIRS), distance correlation sure-independent screening (DCSIS) and robust ranking correlation screening (RRCS). Finally, we demonstrate the validity of fused-PDFD by a real data example.  相似文献   

20.
For ultrahigh-dimensional data, independent feature screening has been demonstrated both theoretically and empirically to be an effective dimension reduction method with low computational demanding. Motivated by the Buckley–James method to accommodate censoring, we propose a fused Kolmogorov–Smirnov filter to screen out the irrelevant dependent variables for ultrahigh-dimensional survival data. The proposed model-free screening method can work with many types of covariates (e.g. continuous, discrete and categorical variables) and is shown to enjoy the sure independent screening property under mild regularity conditions without requiring any moment conditions on covariates. In particular, the proposed procedure can still be powerful when covariates are strongly dependent on each other. We further develop an iterative algorithm to enhance the performance of our method while dealing with the practical situations where some covariates may be marginally unrelated but jointly related to the response. We conduct extensive simulations to evaluate the finite-sample performance of the proposed method, showing that it has favourable exhibition over the existing typical methods. As an illustration, we apply the proposed method to the diffuse large-B-cell lymphoma study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号