首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the estimation in the proportional odds model based on randomly truncated data. The proposed estimators for the regression coefficients include a class of minimum distance estimators defined through weighted empirical odds function. We have investigated the asymptotic properties like the consistency and the limiting distribution of the proposed estimators under mild conditions. The finite sample properties were investigated through simulation study making comparison of some of the estimators in the class. We conclude with an illustration of our proposed method to a well-known AIDS data.  相似文献   

2.
In this paper, we study the estimation of the unbalanced panel data partially linear models with a one-way error components structure. A weighted semiparametric least squares estimator (WSLSE) is developed using polynomial spline approximation and least squares. We show that the WSLSE is asymptotically more efficient than the corresponding unweighted estimator for both parametric and nonparametric components of the model. This is a significant improvement over previous results in the literature which showed that the simply weighting technique can only improve the estimation of the parametric component. The asymptotic normalities of the proposed WSLSE are also established.  相似文献   

3.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error.  相似文献   

4.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.  相似文献   

5.
Varying coefficient partially linear models are usually used for longitudinal data analysis, and an interest is mainly to improve efficiency of regression coefficients. By the orthogonality estimation technology and the quadratic inference function method, we propose a new orthogonality-based estimation method to estimate parameter and nonparametric components in varying coefficient partially linear models with longitudinal data. The proposed procedure can separately estimate the parametric and nonparametric components, and the resulting estimators do not affect each other. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Furthermore, the finite sample performance of the proposed procedure is assessed by some simulation experiments.  相似文献   

6.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

7.
We propose a flexible nonparametric estimation of a variance function from a one-dimensional process where the process errors are nonstationary and correlated. Due to nonstationarity a local variogram is defined, and its asymptotic properties are derived. We include a bandwidth selection method for smoothing taking into account the correlations in the errors. We compare the proposed difference-based nonparametric approach with Anderes and Stein(2011)’s local-likelihood approach. Our method has a smaller integrated MSE, easily fixes the boundary bias, and requires far less computing time than the likelihood-based method.  相似文献   

8.
The author considers estimation under a Gamma process model for degradation data. The setting for degradation data is one in which n independent units, each with a Gamma process with a common shape function and scale parameter, are observed at several possibly different times. Covariates can be incorporated into the model by taking the scale parameter as a function of the covariates. The author proposes using the maximum pseudo‐likelihood method to estimate the unknown parameters. The method requires usage of the Pool Adjacent Violators Algorithm. Asymptotic properties, including consistency, convergence rate and asymptotic distribution, are established. Simulation studies are conducted to validate the method and its application is illustrated by using bridge beams data and carbon‐film resistors data. The Canadian Journal of Statistics 37: 102‐118; 2009 © 2009 Statistical Society of Canada  相似文献   

9.
Recently Jammalamadaka and Mangalam [2003. Non-parametric estimation for middle censored data. J. Nonparametric Statist. 15, 253–265] introduced a general censoring scheme called the “middle-censoring” scheme in non-parametric set up. In this paper we consider this middle-censoring scheme when the lifetime distribution of the items is exponentially distributed and the censoring mechanism is independent and non-informative. In this set up, we derive the maximum likelihood estimator and study its consistency and asymptotic normality properties. We also derive the Bayes estimate of the exponential parameter under a gamma prior. Since a theoretical construction of the credible interval becomes quite difficult, we propose and implement Gibbs sampling technique to construct the credible intervals. Monte Carlo simulations are performed to evaluate the small sample behavior of the techniques proposed. A real data set is analyzed to illustrate the practical application of the proposed methods.  相似文献   

10.
This paper is concerned with semiparametric discrete kernel estimators when the unknown count distribution can be considered to have a general weighted Poisson form. The estimator is constructed by multiplying the Poisson estimate with a nonparametric discrete kernel-type estimate of the Poisson weight function. Comparisons are then carried out with the ordinary discrete kernel probability mass function estimators. The Poisson weight function is thus a local multiplicative correction factor, and is considered as the uniform measure to detect departures from the equidispersed Poisson distribution. In this way, the effects of dispersion and zero-proportion with respect to the standard Poisson distribution are also minimized. This method of estimation is also applied to the weighted binomial form for the count distribution having a finite support. The proposed estimators, in addition to being simple, easy-to-implement and effective, also outperform the competing nonparametric and parametric estimators in finite-sample situations. Two examples illustrate this new semiparametric estimation.  相似文献   

11.
For doubly truncated data, i.e. the variables of interest are only observable if they lie in a certain random interval, an additive hazard model with time-dependent regression coefficients is investigated. Consistency and asymptotic normality are proven under mild assumptions. A simulation study investigates the finite sample properties and the influence of the truncation distribution on the estimation error. Finally, the method is applied to a doubly truncated data set of German companies, where the age at insolvency is of interest.  相似文献   

12.
In this paper, a mixture model under multiplicative censoring is considered. We investigate the estimation of a component of the mixture (a density) from the observations. A new adaptive estimator based on wavelets and a hard thresholding rule is constructed for this problem. Under mild assumptions on the model, we study its asymptotic properties by determining an upper bound of the mean integrated squared error over a wide range of Besov balls. We prove that the obtained upper bound is sharp.  相似文献   

13.
Motivated by Chaudhuri's work [1996. On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91, 862–872] on unconditional geometric quantiles, we explore the asymptotic properties of sample geometric conditional quantiles, defined through kernel functions, in high-dimensional spaces. We establish a Bahadur-type linear representation for the geometric conditional quantile estimator and obtain the convergence rate for the corresponding remainder term. From this, asymptotic normality including bias on the estimated geometric conditional quantile is derived. Based on these results, we propose confidence ellipsoids for multivariate conditional quantiles. The methodology is illustrated via data analysis and a Monte Carlo study.  相似文献   

14.
Efficient inference for regression models requires that the heteroscedasticity be taken into account. We consider statistical inference under heteroscedasticity in a semiparametric measurement error regression model, in which some covariates are measured with errors. This paper has multiple components. First, we propose a new method for testing the heteroscedasticity. The advantages of the proposed method over the existing ones are that it does not need any nonparametric estimation and does not involve any mismeasured variables. Second, we propose a new two-step estimator for the error variances if there is heteroscedasticity. Finally, we propose a weighted estimating equation-based estimator (WEEBE) for the regression coefficients and establish its asymptotic properties. Compared with existing estimators, the proposed WEEBE is asymptotically more efficient, avoids undersmoothing the regressor functions and requires less restrictions on the observed regressors. Simulation studies show that the proposed test procedure and estimators have nice finite sample performance. A real data set is used to illustrate the utility of our proposed methods.  相似文献   

15.
We investigate the asymptotic behavior of a nonparametric M-estimator of a regression function for stationary dependent processes, where the explanatory variables take values in some abstract functional space. Under some regularity conditions, we give the weak and strong consistency of the estimator as well as its asymptotic normality. We also give two examples of functional processes that satisfy the mixing conditions assumed in this paper. Furthermore, a simulated example is presented to examine the finite sample performance of the proposed estimator.  相似文献   

16.
In longitudinal studies, missing responses and mismeasured covariates are commonly seen due to the data collection process. Without cautiousness in data analysis, inferences from the standard statistical approaches may lead to wrong conclusions. In order to improve the estimation for longitudinal data analysis, a doubly robust estimation method for partially linear models, which can simultaneously account for the missing responses and mismeasured covariates, is proposed. Imprecisions of covariates are corrected by taking advantage of the independence between replicate measurement errors, and missing responses are handled by the doubly robust estimation under the mechanism of missing at random. The asymptotic properties of the proposed estimators are established under regularity conditions, and simulation studies demonstrate desired properties. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study.  相似文献   

17.
Time-series data are often subject to measurement error, usually the result of needing to estimate the variable of interest. Generally, however, the relationship between the surrogate variables and the true variables can be rather complicated compared to the classical additive error structure usually assumed. In this article, we address the estimation of the parameters in autoregressive models in the presence of function measurement errors. We first develop a parameter estimation method with the help of validation data; this estimation method does not depend on functional form and the distribution of the measurement error. The proposed estimator is proved to be consistent. Moreover, the asymptotic representation and the asymptotic normality of the estimator are also derived, respectively. Simulation results indicate that the proposed method works well for practical situation.  相似文献   

18.
We consider the problem of estimating a density function based on aggregated data where the data group sizes may differ from each other. The reconstruction of the target density can be regarded as a nonlinear statistical inverse problem. We introduce some estimation procedures which are capable to use the observations from all groups by some nonstandard deconvolution techniques. General consistency and rate-optimality under common smoothness constraints are developed. We give some numerical simulations and a data-driven bandwidth selector.  相似文献   

19.
Two common kernel-based methods for non-parametric regression estimation suffer from well-known drawbacks when the design is random. The Gasser-Müller estimator is inadmissible due to its high variance while the Nadaraya-Watson estimator has zero asymptotic efficiency because of poor bias behavior. Under asymptotic consideration, the local linear estimator avoids these two drawbacks of kernel estimators and achieves minimax optimality. However, when based on compact support kernels its finite sample behavior is disappointing because sudden kinks may show up in the estimate.

This paper proposes a modification of the kernel estimator, called the binned convolution estimator leading to a fast O(n) method. Provided the design density is continously differentiable and the conditional fourth moments exist the binned convolution estimator has asymptotic properties identical with those of the local linear estimator.  相似文献   

20.
Conditional probability distributions have been commonly used in modeling Markov chains. In this paper we consider an alternative approach based on copulas to investigate Markov-type dependence structures. Based on the realization of a single Markov chain, we estimate the parameters using one- and two-stage estimation procedures. We derive asymptotic properties of the marginal and copula parameter estimators and compare performance of the estimation procedures based on Monte Carlo simulations. At low and moderate dependence structures the two-stage estimation has comparable performance as the maximum likelihood estimation. In addition we propose a parametric pseudo-likelihood ratio test for copula model selection under the two-stage procedure. We apply the proposed methods to an environmental data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号