首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finite mixture of regression (FMR) models are aimed at characterizing subpopulation heterogeneity stemming from different sets of covariates that impact different groups in a population. We address the contemporary problem of simultaneously conducting covariate selection and determining the number of mixture components from a Bayesian perspective that can incorporate prior information. We propose a Gibbs sampling algorithm with reversible jump Markov chain Monte Carlo implementation to accomplish concurrent covariate selection and mixture component determination in FMR models. Our Bayesian approach contains innovative features compared to previously developed reversible jump algorithms. In addition, we introduce component-adaptive weighted g priors for regression coefficients, and illustrate their improved performance in covariate selection. Numerical studies show that the Gibbs sampler with reversible jump implementation performs well, and that the proposed weighted priors can be superior to non-adaptive unweighted priors.  相似文献   

2.
In this paper, we develop Bayesian methodology and computational algorithms for variable subset selection in Cox proportional hazards models with missing covariate data. A new joint semi-conjugate prior for the piecewise exponential model is proposed in the presence of missing covariates and its properties are examined. The covariates are assumed to be missing at random (MAR). Under this new prior, a version of the Deviance Information Criterion (DIC) is proposed for Bayesian variable subset selection in the presence of missing covariates. Monte Carlo methods are developed for computing the DICs for all possible subset models in the model space. A Bone Marrow Transplant (BMT) dataset is used to illustrate the proposed methodology.  相似文献   

3.
Abstract. Lasso and other regularization procedures are attractive methods for variable selection, subject to a proper choice of shrinkage parameter. Given a set of potential subsets produced by a regularization algorithm, a consistent model selection criterion is proposed to select the best one among this preselected set. The approach leads to a fast and efficient procedure for variable selection, especially in high‐dimensional settings. Model selection consistency of the suggested criterion is proven when the number of covariates d is fixed. Simulation studies suggest that the criterion still enjoys model selection consistency when d is much larger than the sample size. The simulations also show that our approach for variable selection works surprisingly well in comparison with existing competitors. The method is also applied to a real data set.  相似文献   

4.
It is often of interest to use regression analysis to study the relationship between occurrence of events in space and spatially-indexed covariates. One model for such regression analysis is the Poisson point process. Here, we develop a method to perform the selection of covariates and the estimation of model parameters simultaneously for this model via a regularization method. We assess the finite-sample properties of our method with a simulation study. In addition, we propose a variant of our method that allows the selection of covariates at multiple pixel resolutions. For illustration, we consider the locations of a tree species, Beilschmiedia pendula, in a study plot at Barro Colorado Island in central Panama. We find that Beilschmiedia pendula occurs in greater abundance at locations with higher elevation and steeper slope. Also, we identify three species to which Beilschmiedia pendula tends to be attracted, two species by which it appears to be repelled, and a species with no apparent relationship.  相似文献   

5.
We introduce extensions of stability selection, a method to stabilise variable selection methods introduced by Meinshausen and Bühlmann (J R Stat Soc 72:417–473, 2010). We propose to apply a base selection method repeatedly to random subsamples of observations and subsets of covariates under scrutiny, and to select covariates based on their selection frequency. We analyse the effects and benefits of these extensions. Our analysis generalizes the theoretical results of Meinshausen and Bühlmann (J R Stat Soc 72:417–473, 2010) from the case of half-samples to subsamples of arbitrary size. We study, in a theoretical manner, the effect of taking random covariate subsets using a simplified score model. Finally we validate these extensions on numerical experiments on both synthetic and real datasets, and compare the obtained results in detail to the original stability selection method.  相似文献   

6.
Recent work has shown that the Lasso-based regularization is very useful for estimating the high-dimensional inverse covariance matrix. A particularly useful scheme is based on penalizing the ?1 norm of the off-diagonal elements to encourage sparsity. We embed this type of regularization into high-dimensional classification. A two-stage estimation procedure is proposed which first recovers structural zeros of the inverse covariance matrix and then enforces block sparsity by moving non-zeros closer to the main diagonal. We show that the block-diagonal approximation of the inverse covariance matrix leads to an additive classifier, and demonstrate that accounting for the structure can yield better performance accuracy. Effect of the block size on classification is explored, and a class of asymptotically equivalent structure approximations in a high-dimensional setting is specified. We suggest a variable selection at the block level and investigate properties of this procedure in growing dimension asymptotics. We present a consistency result on the feature selection procedure, establish asymptotic lower an upper bounds for the fraction of separative blocks and specify constraints under which the reliable classification with block-wise feature selection can be performed. The relevance and benefits of the proposed approach are illustrated on both simulated and real data.  相似文献   

7.
Models that involve an outcome variable, covariates, and latent variables are frequently the target for estimation and inference. The presence of missing covariate or outcome data presents a challenge, particularly when missingness depends on the latent variables. This missingness mechanism is called latent ignorable or latent missing at random and is a generalisation of missing at random. Several authors have previously proposed approaches for handling latent ignorable missingness, but these methods rely on prior specification of the joint distribution for the complete data. In practice, specifying the joint distribution can be difficult and/or restrictive. We develop a novel sequential imputation procedure for imputing covariate and outcome data for models with latent variables under latent ignorable missingness. The proposed method does not require a joint model; rather, we use results under a joint model to inform imputation with less restrictive modelling assumptions. We discuss identifiability and convergence‐related issues, and simulation results are presented in several modelling settings. The method is motivated and illustrated by a study of head and neck cancer recurrence. Imputing missing data for models with latent variables under latent‐dependent missingness without specifying a full joint model.  相似文献   

8.
In many practical applications, high-dimensional regression analyses have to take into account measurement error in the covariates. It is thus necessary to extend regularization methods, that can handle the situation where the number of covariates p largely exceed the sample size n, to the case in which covariates are also mismeasured. A variety of methods are available in this context, but many of them rely on knowledge about the measurement error and the structure of its covariance matrix. In this paper, we set the goal to compare some of these methods, focusing on situations relevant for practical applications. In particular, we will evaluate these methods in setups in which the measurement error distribution and dependence structure are not known and have to be estimated from data. Our focus is on variable selection, and the evaluation is based on extensive simulations.  相似文献   

9.
Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few nonzero components, those covariates that are most important. This article extends the “global‐local” shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K‐outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient‐specific variance term that consists of a predictor‐specific factor (shared local shrinkage parameter) and a model‐specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example.  相似文献   

10.
There is currently much discussion about lasso-type regularized regression which is a useful tool for simultaneous estimation and variable selection. Although the lasso-type regularization has several advantages in regression modelling, owing to its sparsity, it suffers from outliers because of using penalized least-squares methods. To overcome this issue, we propose a robust lasso-type estimation procedure that uses the robust criteria as the loss function, imposing L1-type penalty called the elastic net. We also introduce to use the efficient bootstrap information criteria for choosing optimal regularization parameters and a constant in outlier detection. Simulation studies and real data analysis are given to examine the efficiency of the proposed robust sparse regression modelling. We observe that our modelling strategy performs well in the presence of outliers.  相似文献   

11.
When confronted with multiple covariates and a response variable, analysts sometimes apply a variable‐selection algorithm to the covariate‐response data to identify a subset of covariates potentially associated with the response, and then wish to make inferences about parameters in a model for the marginal association between the selected covariates and the response. If an independent data set were available, the parameters of interest could be estimated by using standard inference methods to fit the postulated marginal model to the independent data set. However, when applied to the same data set used by the variable selector, standard (“naive”) methods can lead to distorted inferences. The authors develop testing and interval estimation methods for parameters reflecting the marginal association between the selected covariates and response variable, based on the same data set used for variable selection. They provide theoretical justification for the proposed methods, present results to guide their implementation, and use simulations to assess and compare their performance to a sample‐splitting approach. The methods are illustrated with data from a recent AIDS study. The Canadian Journal of Statistics 37: 625–644; 2009 © 2009 Statistical Society of Canada  相似文献   

12.
Mixture of linear mixed-effects models has received considerable attention in longitudinal studies, including medical research, social science and economics. The inferential question of interest is often the identification of critical factors that affect the responses. We consider a Bayesian approach to select the important fixed and random effects in the finite mixture of linear mixed-effects models. To accomplish our goal, latent variables are introduced to facilitate the identification of influential fixed and random components and to classify the membership of observations in the longitudinal data. A spike-and-slab prior for the regression coefficients is adopted to sidestep the potential complications of highly collinear covariates and to handle large p and small n issues in the variable selection problems. Here we employ Markov chain Monte Carlo (MCMC) sampling techniques for posterior inferences and explore the performance of the proposed method in simulation studies, followed by an actual psychiatric data analysis concerning depressive disorder.  相似文献   

13.
Count data with excess zeros are widely encountered in the fields of biomedical, medical, public health and social survey, etc. Zero-inflated Poisson (ZIP) regression models with mixed effects are useful tools for analyzing such data, in which covariates are usually incorporated in the model to explain inter-subject variation and normal distribution is assumed for both random effects and random errors. However, in many practical applications, such assumptions may be violated as the data often exhibit skewness and some covariates may be measured with measurement errors. In this paper, we deal with these issues simultaneously by developing a Bayesian joint hierarchical modeling approach. Specifically, by treating intercepts and slopes in logistic and Poisson regression as random, a flexible two-level ZIP regression model is proposed, where a covariate process with measurement errors is established and a skew-t-distribution is considered for both random errors and random effects. Under the Bayesian framework, model selection is carried out using deviance information criterion (DIC) and a goodness-of-fit statistics is also developed for assessing the plausibility of the posited model. The main advantage of our method is that it allows for more robustness and correctness for investigating heterogeneity from different levels, while accommodating the skewness and measurement errors simultaneously. An application to Shanghai Youth Fitness Survey is used as an illustrate example. Through this real example, it is showed that our approach is of interest and usefulness for applications.  相似文献   

14.
Semiparametric regression models with multiple covariates are commonly encountered. When there are covariates not associated with response variable, variable selection may lead to sparser models, more lucid interpretations and more accurate estimation. In this study, we adopt a sieve approach for the estimation of nonparametric covariate effects in semiparametric regression models. We adopt a two-step iterated penalization approach for variable selection. In the first step, a mixture of the Lasso and group Lasso penalties are employed to conduct the first-round variable selection and obtain the initial estimate. In the second step, a mixture of the weighted Lasso and weighted group Lasso penalties, with weights constructed using the initial estimate, are employed for variable selection. We show that the proposed iterated approach has the variable selection consistency property, even when number of unknown parameters diverges with sample size. Numerical studies, including simulation and analysis of a diabetes dataset, show satisfactory performance of the proposed approach.  相似文献   

15.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

16.
We propose methods for Bayesian inference for missing covariate data with a novel class of semi-parametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology.  相似文献   

17.
Let Y be a response variable, possibly multivariate, with a density function f (y|x, v; β) conditional on vectors x and v of covariates and a vector β of unknown parameters. The authors consider the problem of estimating β when the values taken by the covariate vector v are available for all observations while some of those taken by the covariate x are missing at random. They compare the profile estimator to several alternatives, both in terms of bias and standard deviation, when the response and covariates are discrete or continuous.  相似文献   

18.
We consider parametric regression problems with some covariates missing at random. It is shown that the regression parameter remains identifiable under natural conditions. When the always observed covariates are discrete, we propose a semiparametric maximum likelihood method, which does not require parametric specification of the missing data mechanism or the covariate distribution. The global maximum likelihood estimator (MLE), which maximizes the likelihood over the whole parameter set, is shown to exist under simple conditions. For ease of computation, we also consider a restricted MLE which maximizes the likelihood over covariate distributions supported by the observed values. Under regularity conditions, the two MLEs are asymptotically equivalent and strongly consistent for a class of topologies on the parameter set.  相似文献   

19.
In survival analysis, we may encounter the following three problems: nonlinear covariate effect, variable selection and measurement error. Existing studies only address one or two of these problems. The goal of this study is to fill the knowledge gap and develop a novel approach to simultaneously address all three problems. Specifically, a partially time-varying coefficient proportional hazards model is proposed to more flexibly describe covariate effects. Corrected score and conditional score approaches are employed to accommodate potential measurement error. For the selection of relevant variables and regularised estimation, a penalisation approach is adopted. It is shown that the proposed approach has satisfactory asymptotic properties. It can be effectively realised using an iterative algorithm. The performance of the proposed approach is assessed via simulation studies and further illustrated by application to data from an AIDS clinical trial.  相似文献   

20.
Varying covariate effects often manifest meaningful heterogeneity in covariate-response associations. In this paper, we adopt a quantile regression model that assumes linearity at a continuous range of quantile levels as a tool to explore such data dynamics. The consideration of potential non-constancy of covariate effects necessitates a new perspective for variable selection, which, under the assumed quantile regression model, is to retain variables that have effects on all quantiles of interest as well as those that influence only part of quantiles considered. Current work on l 1-penalized quantile regression either does not concern varying covariate effects or may not produce consistent variable selection in the presence of covariates with partial effects, a practical scenario of interest. In this work, we propose a shrinkage approach by adopting a novel uniform adaptive LASSO penalty. The new approach enjoys easy implementation without requiring smoothing. Moreover, it can consistently identify the true model (uniformly across quantiles) and achieve the oracle estimation efficiency. We further extend the proposed shrinkage method to the case where responses are subject to random right censoring. Numerical studies confirm the theoretical results and support the utility of our proposals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号