首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, several methodologies to perform geostatistical analysis of functional data have been proposed. All of them assume that the spatial functional process considered is stationary. However, in practice, we often have nonstationary functional data because there exists an explicit spatial trend in the mean. Here, we propose a methodology to extend kriging predictors for functional data to the case where the mean function is not constant through the region of interest. We consider an approach based on the classical residual kriging method used in univariate geostatistics. We propose a three steps procedure. Initially, a functional regression model is used to detrend the mean. Then we apply kriging methods for functional data to the regression residuals to predict a residual curve at a non-data location. Finally, the prediction curve is obtained as the sum of the trend and the residual prediction. We apply the methodology to salinity data corresponding to 21 salinity curves recorded at the Ciénaga Grande de Santa Marta estuary, located in the Caribbean coast of Colombia. A cross-validation analysis was carried out to track the performance of the proposed methodology.  相似文献   

2.
We consider best linear unbiased prediction for multivariable data. Minimizing mean-squared-prediction errors leads to prediction equations involving either covariances or variograms. We discuss problems with multivariate extensions that include the construction of valid models and the estimation of their parameters. In this paper, we develop new methods to construct valid crossvariograms, fit them to data, and then use them for multivariable spatial prediction, including cokriging. Crossvariograms are constructed by explicitly modeling spatial data as moving averages over white noise random processes. Parameters of the moving average functions may be inferred from the variogram, and with few additional parameters, crossvariogram models are constructed. Weighted least squares is then used to fit the crossvariogram model to the empirical crossvariogram for the data. We demonstrate the method for simulated data, and show a considerable advantage of cokriging over ordinary kriging.  相似文献   

3.
Both kriging and non-parametric regression smoothing can model a non-stationary regression function with spatially correlated errors. However comparisons have mainly been based on ordinary kriging and smoothing with uncorrelated errors. Ordinary kriging attributes smoothness of the response to spatial autocorrelation whereas non-parametric regression attributes trends to a smooth regression function. For spatial processes it is reasonable to suppose that the response is due to both trend and autocorrelation. This paper reviews methodology for non-parametric regression with autocorrelated errors which is a natural compromise between the two methods. Re-analysis of the one-dimensional stationary spatial data of Laslett (1994) and a clearly non-stationary time series demonstrates the rather surprising result that for these data, ordinary kriging outperforms more computationally intensive models including both universal kriging and correlated splines for spatial prediction. For estimating the regression function, non-parametric regression provides adaptive estimation, but the autocorrelation must be accounted for in selecting the smoothing parameter.  相似文献   

4.
A spatial prediction procedure is investigated which is based upon maximizing the squared correlation between the predictor and the value to be estimated. Several properties of this predictor are examined and contrasted with the simple kriging predictor. Some examples are discussed.  相似文献   

5.
6.
We consider the recent history functional linear models, relating a longitudinal response to a longitudinal predictor where the predictor process only in a sliding window into the recent past has an effect on the response value at the current time. We propose an estimation procedure for recent history functional linear models that is geared towards sparse longitudinal data, where the observation times across subjects are irregular and total number of measurements per subject is small. The proposed estimation procedure builds upon recent developments in literature for estimation of functional linear models with sparse data and utilizes connections between the recent history functional linear models and varying coefficient models. We establish uniform consistency of the proposed estimators, propose prediction of the response trajectories and derive their asymptotic distribution leading to asymptotic point-wise confidence bands. We include a real data application and simulation studies to demonstrate the efficacy of the proposed methodology.  相似文献   

7.
Spatiotemporal prediction is of interest in many areas of applied statistics, especially in environmental monitoring with on-line data information. At first, this article reviews the approaches for spatiotemporal modeling in the context of stochastic processes and then introduces the new class of spatiotemporal dynamic linear models. Further, the methods for linear spatial data analysis, universal kriging and trend surface prediction, are related to the method of spatial linear Bayesian analysis. The Kalman filter is the preferred method for temporal linear Bayesian inferences. By combining the Kalman filter recursions with the trend surface predictor and universal kriging predictor, the prior and posterior spatiotemporal predictors for the observational process are derived, which form the main result of this article. The problem of spatiotemporal linear prediction in the case of unknown first and second order moments is treated as well.  相似文献   

8.
Universal kriging is a form of interpolation that takes into account the local trends in data when minimizing the error associated with the estimator. Under multivariate normality assumptions, the given predictor is the best linear unbiased predictor. but if the underlying distribution is not normal, the estimator will not be unbiased and will be vulnerable to outliers. With spatial data, it is not only the presence of outliers that may spoil the predictions, but also the boundary sites. usually corners, that tend to have high leverage. As an alternative, a weighted one-step generalized M estimator of the location parameters in a spatial linear model is proposed. It is especially recommended in the case of irregularly spaced data.  相似文献   

9.
Summary.  Pharmacological experiments in brain microscopy study patterns of cellular activ- ation in response to psychotropic drugs for connected neuroanatomic regions. A typical ex- perimental design produces replicated point patterns having highly complex spatial variability. Modelling this variability hierarchically can enhance the inference for comparing treatments. We propose a semiparametric formulation that combines the robustness of a nonparametric kernel method with the efficiency of likelihood-based parameter estimation. In the convenient framework of a generalized linear mixed model, we decompose pattern variation by kriging the intensities of a hierarchically heterogeneous spatial point process. This approximation entails discretizing the inhomogeneous Poisson likelihood by Voronoi tiling of augmented point patterns. The resulting intensity-weighted log-linear model accommodates spatial smoothing through a reduced rank penalized linear spline. To correct for anatomic distortion between subjects, we interpolate point locations via an isomorphic mapping so that smoothing occurs relative to common neuroanatomical atlas co-ordinates. We propose a criterion for choosing the degree and spatial locale of smoothing based on truncating the ordered set of smoothing covariates to minimize residual extra-dispersion. Additional spatial covariates, experimental design factors, hierarchical random effects and intensity functions are readily accommodated in the linear predictor, enabling comprehensive analyses of the salient properties underlying replicated point patterns. We illustrate our method through application to data from a novel study of drug effects on neuronal activation patterns in the brain of rats.  相似文献   

10.
Many research fields increasingly involve analyzing data of a complex structure. Models investigating the dependence of a response on a predictor have moved beyond the ordinary scalar-on-vector regression. We propose a regression model for a scalar response and a surface (or a bivariate function) predictor. The predictor has a random component and the regression model falls in the framework of linear random effects models. We estimate the model parameters via maximizing the log-likelihood with the ECME (Expectation/Conditional Maximization Either) algorithm. We use the approach to analyze a data set where the response is the neuroticism score and the predictor is the resting-state brain function image. In the simulations we tried, the approach has better performance than two other approaches, a functional principal component regression approach and a smooth scalar-on-image regression approach.  相似文献   

11.
Spatial modeling is widely used in environmental sciences, biology, and epidemiology. Generalized linear mixed models are employed to account for spatial variations of point-referenced data called spatial generalized linear mixed models (SGLMMs). Frequentist analysis of these type of data is computationally difficult. On the other hand, the advent of the Markov chain Monte Carlo algorithm has made the Bayesian analysis of SGLMM computationally convenient. Recent introduction of the method of data cloning, which leads to maximum likelihood estimate, has made frequentist analysis of mixed models also equally computationally convenient. Recently, the data cloning was employed to estimate model parameters in SGLMMs, however, the prediction of spatial random effects and kriging are also very important. In this article, we propose a frequentist approach based on data cloning to predict (and provide prediction intervals) spatial random effects and kriging. We illustrate this approach using a real dataset and also by a simulation study.  相似文献   

12.
In geostatistics, the prediction of unknown quantities at given locations is commonly made by the kriging technique. In addition to the kriging technique for modeling regular lattice spatial data, the spatial autoregressive models can also be used. In this article, the spatial autoregressive model and the kriging technique are introduced. We extend prediction method proposed by Basu and Reinsel for SAR(2,1) model. Then, using a simulation study and real data, we compare prediction accuracy of the spatial autoregressive models with that of the kriging prediction. The results of simulation study show that predictions made by the autoregressive models are good competitor for the kriging method.  相似文献   

13.
This paper investigates a nonparametric spatial predictor of a stationary multidimensional spatial process observed over a rectangular domain. The proposed predictor depends on two kernels in order to control both the distance between observations and that between spatial locations. The uniform almost complete consistency and the asymptotic normality of the kernel predictor are obtained when the sample considered is an alpha-mixing sequence. Numerical studies were carried out in order to illustrate the behaviour of our methodology both for simulated data and for an environmental data set.  相似文献   

14.
The Bootstrap and Kriging Prediction Intervals   总被引:1,自引:0,他引:1  
Kriging is a method for spatial prediction that, given observations of a spatial process, gives the optimal linear predictor of the process at a new specified point. The kriging predictor may be used to define a prediction interval for the value of interest. The coverage of the prediction interval will, however, equal the nominal desired coverage only if it is constructed using the correct underlying covariance structure of the process. If this is unknown, it must be estimated from the data. We study the effect on the coverage accuracy of the prediction interval of substituting the true covariance parameters by estimators, and the effect of bootstrap calibration of coverage properties of the resulting 'plugin' interval. We demonstrate that plugin and bootstrap calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration appears to have a significant effect in improving the rate of convergence of coverage error.  相似文献   

15.
This article studies design selection for generalized linear models (GLMs) using the quantile dispersion graphs (QDGs) approach in the presence of misspecification in the link and/or linear predictor. The uncertainty in the linear predictor is represented by a unknown function and estimated using kriging. For addressing misspecified link functions, a generalized family of link functions is used. Numerical examples are shown to illustrate the proposed methodology.  相似文献   

16.
The main objective of this study is to introduce two advanced statistical methods and to consider geographical distribution of tuberculosis incidence in Iran. With the knowledge that environmental and climatic conditions in each region are affective for the incidence and spread of the disease, the study has been taken into consideration. The disease incidences in different counties are realizations of spatial data, therefore we apply the Poisson kriging and ordinary kriging for prediction of tuberculosis incidence rates map in Iran. To identify high risk areas using statistical map of disease, our results show that tuberculosis incidences are not uniformly distributed in whole of the country and estimated risk is high in the eastern parts. Assessing geographical distribution of a disease is essential for health officials to recognize high-risk areas, and improve case management and resource allocation.  相似文献   

17.
We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew‐Gaussian process, thus obtaining a process with skew‐t marginal distributions. For the proposed (skew) t process, we study the second‐order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.  相似文献   

18.
Spatial econometric models estimated on the big geo-located point data have at least two problems: limited computational capabilities and inefficient forecasting for the new out-of-sample geo-points. This is because of spatial weights matrix W defined for in-sample observations only and the computational complexity. Machine learning models suffer the same when using kriging for predictions; thus this problem still remains unsolved. The paper presents a novel methodology for estimating spatial models on big data and predicting in new locations. The approach uses bootstrap and tessellation to calibrate both model and space. The best bootstrapped model is selected with the PAM (Partitioning Around Medoids) algorithm by classifying the regression coefficients jointly in a nonindependent manner. Voronoi polygons for the geo-points used in the best model allow for a representative space division. New out-of-sample points are assigned to tessellation tiles and linked to the spatial weights matrix as a replacement for an original point what makes feasible usage of calibrated spatial models as a forecasting tool for new locations. There is no trade-off between forecast quality and computational efficiency in this approach. An empirical example illustrates a model for business locations and firms' profitability.  相似文献   

19.
Statistics for spatial functional data is an emerging field in statistics which combines methods of spatial statistics and functional data analysis to model spatially correlated functional data. Checking for spatial autocorrelation is an important step in the statistical analysis of spatial data. Several statistics to achieve this goal have been proposed. The test based on the Mantel statistic is widely known and used in this context. This paper proposes an application of this test to the case of spatial functional data. Although we focus particularly on geostatistical functional data, that is functional data observed in a region with spatial continuity, the test proposed can also be applied with functional data which can be measured on a discrete set of areas of a region (areal functional data) by defining properly the distance between the areas. Based on two simulation studies, we show that the proposed test has a good performance. We illustrate the methodology by applying it to an agronomic data set.  相似文献   

20.
The purpose of this article is to demonstrate the use of the quantile dispersion graphs (QDGs) approach for comparing candidate designs for generalized linear models in the presence of model misspecification in the linear predictor. The proposed design criterion is based on the mean-squared error of prediction which incorporates the prediction variance and the bias caused by fitting the wrong model. The method of kriging is used to estimate the unknown function assumed to be the cause of model misspecification. The QDGs approach is also useful in assessing the robustness of a given design to values of the unknown parameters in the linear predictor. Three numerical examples are presented to illustrate the application of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号