首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose a testing technique for multivariate heteroscedasticity, which is expressed as a test of linear restrictions in a multivariate regression model. Four test statistics with known asymptotical null distributions are suggested, namely the Wald, Lagrange multiplier (LM), likelihood ratio (LR) and the multivariate Rao F-test. The critical values for the statistics are determined by their asymptotic null distributions, but bootstrapped critical values are also used. The size, power and robustness of the tests are examined in a Monte Carlo experiment. Our main finding is that all the tests limit their nominal sizes asymptotically, but some of them have superior small sample properties. These are the F, LM and bootstrapped versions of Wald and LR tests.  相似文献   

2.
It is suggested that inference under the proportional hazard model can be carried out by programs for exact inference under the logistic regression model. Advantages of such inference is that software is available and that multivariate models can be addressed. The method has been evaluated by means of coverage and power calculations in certain situations. In all situations coverage was above the nominal level, but on the other hand rather conservative. A different type of exact inference is developed under Type II censoring. Inference was then less conservative, however there are limitations with respect to censoring mechanism, multivariate generalizations and software is not available. This method also requires extensive computational power. Performance of large sample Wald, score and likelihood inference was also considered. Large sample methods works remarkably well with small data sets, but inference by score statistics seems to be the best choice. There seems to be some problems with likelihood ratio inference that may originate from how this method works with infinite estimates of the regression parameter. Inference by Wald statistics can be quite conservative with very small data sets.  相似文献   

3.
An accurate procedure is proposed to calculate approximate moments of progressive order statistics in the context of statistical inference for lifetime models. The study analyses the performance of power series expansion to approximate the moments for location and scale distributions with high precision and smaller deviations with respect to the exact values. A comparative analysis between exact and approximate methods is shown using some tables and figures. The different approximations are applied in two situations. First, we consider the problem of computing the large sample variance–covariance matrix of maximum likelihood estimators. We also use the approximations to obtain progressively censored sampling plans for log-normal distributed data. These problems illustrate that the presented procedure is highly useful to compute the moments with precision for numerous censoring patterns and, in many cases, is the only valid method because the exact calculation may not be applicable.  相似文献   

4.
The latent class model or multivariate multinomial mixture is a powerful approach for clustering categorical data. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. In this paper, we exploit the fact that a fully Bayesian analysis with Jeffreys non-informative prior distributions does not involve technical difficulty to propose an exact expression of the integrated complete-data likelihood, which is known as being a meaningful model selection criterion in a clustering perspective. Similarly, a Monte Carlo approximation of the integrated observed-data likelihood can be obtained in two steps: an exact integration over the parameters is followed by an approximation of the sum over all possible partitions through an importance sampling strategy. Then, the exact and the approximate criteria experimentally compete, respectively, with their standard asymptotic BIC approximations for choosing the number of mixture components. Numerical experiments on simulated data and a biological example highlight that asymptotic criteria are usually dramatically more conservative than the non-asymptotic presented criteria, not only for moderate sample sizes as expected but also for quite large sample sizes. This research highlights that asymptotic standard criteria could often fail to select some interesting structures present in the data.  相似文献   

5.
This article considers the different methods for determining sample sizes for Wald, likelihood ratio, and score tests for logistic regression. We review some recent methods, report the results of a simulation study comparing each of the methods for each of the three types of test, and provide Mathematica code for calculating sample size. We consider a variety of covariate distributions, and find that a calculation method based on a first order expansion of the likelihood ratio test statistic performs consistently well in achieving a target level of power for each of the three types of test.  相似文献   

6.
One of the general problems in clinical trials and mortality rates is the comparison of competing risks. Most of the test statistics used for independent and dependent risks with censored data belong to the class of weighted linear rank tests in its multivariate version. In this paper, we introduce the saddlepoint approximations as accurate and fast approximations for the exact p-values of this class of tests instead of the asymptotic and permutation simulated calculations. Real data examples and extensive simulation studies showed the accuracy and stability performance of the saddlepoint approximations over different scenarios of lifetime distributions, sample sizes and censoring.  相似文献   

7.
Permutation Tests for Linear Models   总被引:4,自引:1,他引:3  
Several approximate permutation tests have been proposed for tests of partial regression coefficients in a linear model based on sample partial correlations. This paper begins with an explanation and notation for an exact test. It then compares the distributions of the test statistics under the various permutation methods proposed, and shows that the partial correlations under permutation are asymptotically jointly normal with means 0 and variances 1. The method of Freedman & Lane (1983) is found to have asymptotic correlation 1 with the exact test, and the other methods are found to have smaller correlations with this test. Under local alternatives the critical values of all the approximate permutation tests converge to the same constant, so they all have the same asymptotic power. Simulations demonstrate these theoretical results.  相似文献   

8.
For the problem of testing the homogeneity of the covariance matrices of several dependent multivariate normals, a likelihood ratio test is derived in this paper. The software SAS can be used to perform the test and the code is given and explained. Several modifications of the test that allow their distributions to be better approximated by the chi-square distribution are also considered. Formulae for calculating approximate sample size and power are derived. Small sample performances of these tests in the case of two dependent bivariate normals are compared to each other and to the competing tests by simulating levels of significance and powers, and recommendation is made of the ones that have good performance. The recommended tests are then applied to real data from a crossover bioequivalence trial.  相似文献   

9.
10.
A Wald test-based approach for power and sample size calculations has been presented recently for logistic and Poisson regression models using the asymptotic normal distribution of the maximum likelihood estimator, which is applicable to tests of a single parameter. Unlike the previous procedures involving the use of score and likelihood ratio statistics, there is no simple and direct extension of this approach for tests of more than a single parameter. In this article, we present a method for computing sample size and statistical power employing the discrepancy between the noncentral and central chi-square approximations to the distribution of the Wald statistic with unrestricted and restricted parameter estimates, respectively. The distinguishing features of the proposed approach are the accommodation of tests about multiple parameters, the flexibility of covariate configurations and the generality of overall response levels within the framework of generalized linear models. The general procedure is illustrated with some special situations that have motivated this research. Monte Carlo simulation studies are conducted to assess and compare its accuracy with existing approaches under several model specifications and covariate distributions.  相似文献   

11.
Sequential analyses in clinical trials have ethical and economic advantages over fixed sample size methods. The sequential probability ratio test (SPRT) is a hypothesis testing procedure which evaluates data as it is collected. The original SPRT was developed by Wald for one-parameter families of distributions and later extended by Bartlett to handle the case of nuisance parameters. However, Bartlett's SPRT requires independent and identically distributed observations. In this paper we show that Bartlett's SPRT can be applied to generalized linear model (GLM) contexts. Then we propose an SPRT analysis methodology for a Poisson generalized linear mixed model (GLMM) that is suitable for our application to the design of a multicenter randomized clinical trial that compares two preventive treatments for surgical site infections. We validate the methodology with a simulation study that includes a comparison to Neyman–Pearson and Bayesian fixed sample size test designs and the Wald SPRT.  相似文献   

12.
For interval estimation of a proportion, coverage probabilities tend to be too large for “exact” confidence intervals based on inverting the binomial test and too small for the interval based on inverting the Wald large-sample normal test (i.e., sample proportion ± z-score × estimated standard error). Wilson's suggestion of inverting the related score test with null rather than estimated standard error yields coverage probabilities close to nominal confidence levels, even for very small sample sizes. The 95% score interval has similar behavior as the adjusted Wald interval obtained after adding two “successes” and two “failures” to the sample. In elementary courses, with the score and adjusted Wald methods it is unnecessary to provide students with awkward sample size guidelines.  相似文献   

13.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

14.
Sampling cost is a crucial factor in sample size planning, particularly when the treatment group is more expensive than the control group. To either minimize the total cost or maximize the statistical power of the test, we used the distribution-free Wilcoxon–Mann–Whitney test for two independent samples and the van Elteren test for randomized block design, respectively. We then developed approximate sample size formulas when the distribution of data is abnormal and/or unknown. This study derived the optimal sample size allocation ratio for a given statistical power by considering the cost constraints, so that the resulting sample sizes could minimize either the total cost or the total sample size. Moreover, for a given total cost, the optimal sample size allocation is recommended to maximize the statistical power of the test. The proposed formula is not only innovative, but also quick and easy. We also applied real data from a clinical trial to illustrate how to choose the sample size for a randomized two-block design. For nonparametric methods, no existing commercial software for sample size planning has considered the cost factor, and therefore the proposed methods can provide important insights related to the impact of cost constraints.  相似文献   

15.
Various methods to control the influence of a covariate on a response variable are compared. These methods are ANOVA with or without homogeneity of variances (HOV) of errors and Kruskal–Wallis (K–W) tests on (covariate-adjusted) residuals and analysis of covariance (ANCOVA). Covariate-adjusted residuals are obtained from the overall regression line fit to the entire data set ignoring the treatment levels or factors. It is demonstrated that the methods on covariate-adjusted residuals are only appropriate when the regression lines are parallel and covariate means are equal for all treatments. Empirical size and power performance of the methods are compared by extensive Monte Carlo simulations. We manipulated the conditions such as assumptions of normality and HOV, sample size, and clustering of the covariates. The parametric methods on residuals and ANCOVA exhibited similar size and power when error terms have symmetric distributions with variances having the same functional form for each treatment, and covariates have uniform distributions within the same interval for each treatment. In such cases, parametric tests have higher power compared to the K–W test on residuals. When error terms have asymmetric distributions or have variances that are heterogeneous with different functional forms for each treatment, the tests are liberal with K–W test having higher power than others. The methods on covariate-adjusted residuals are severely affected by the clustering of the covariates relative to the treatment factors when covariate means are very different for treatments. For data clusters, ANCOVA method exhibits the appropriate level. However, such a clustering might suggest dependence between the covariates and the treatment factors, so makes ANCOVA less reliable as well.  相似文献   

16.
In this article, we point out some interesting relations between the exact test and the score test for a binomial proportion p. Based on the properties of the tests, we propose some approximate as well as exact methods of computing sample sizes required for the tests to attain a specified power. Sample sizes required for the tests are tabulated for various values of p to attain a power of 0.80 at level 0.05. We also propose approximate and exact methods of computing sample sizes needed to construct confidence intervals with a given precision. Using the proposed exact methods, sample sizes required to construct 95% confidence intervals with various precisions are tabulated for p = .05(.05).5. The approximate methods for computing sample sizes for score confidence intervals are very satisfactory and the results coincide with those of the exact methods for many cases.  相似文献   

17.
Abstract

The multivariate elliptically contoured distributions provide a viable framework for modeling time-series data. It includes the multivariate normal, power exponential, t, and Cauchy distributions as special cases. For multivariate elliptically contoured autoregressive models, we derive the exact likelihood equations for the model parameters. They are closely related to the Yule-Walker equations and involve simple function of the data. The maximum likelihood estimators are obtained by alternately solving two linear systems and illustrated using the simulation data.  相似文献   

18.
Confidence intervals for the difference of two binomial proportions are well known, however, confidence intervals for the weighted sum of two binomial proportions are less studied. We develop and compare seven methods for constructing confidence intervals for the weighted sum of two independent binomial proportions. The interval estimates are constructed by inverting the Wald test, the score test and the Likelihood ratio test. The weights can be negative, so our results generalize those for the difference between two independent proportions. We provide a numerical study that shows that these confidence intervals based on large‐sample approximations perform very well, even when a relatively small amount of data is available. The intervals based on the inversion of the score test showed the best performance. Finally, we show that as for the difference of two binomial proportions, adding four pseudo‐outcomes to the Wald interval for the weighted sum of two binomial proportions improves its coverage significantly, and we provide a justification for this correction.  相似文献   

19.
For a multivariate linear model, Wilk's likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative hypothesis requires complex analytic approximations, and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say p≤20. On the other hand, assuming that the data dimension p as well as the number q of regression variables are fixed while the sample size n grows, several asymptotic approximations are proposed in the literature for Wilk's Λ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilk's test in a high-dimensional context, specifically assuming a high data dimension p and a large sample size n. Based on recent random matrix theory, the correction we propose to Wilk's test is asymptotically Gaussian under the null hypothesis and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large p and large n context, but also for moderately large data dimensions such as p=30 or p=50. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in multivariate analysis of variance which is valid for high-dimensional data.  相似文献   

20.
Marginal hazard models for multivariate failure time data have been studied extensively in recent literature. However, standard hypothesis test statistics based on the likelihood method are not exactly appropriate for this kind of model. In this paper, extensions of the three commonly used likelihood hypothesis test statistics are discussed. Generalized Wald, generalized score and generalized likelihood ratio tests for hazard ratio parameters in a marginal hazard model for multivariate failure time data are proposed and their asymptotic distributions examined. The finite sample properties of these statistics are studied through simulations. The proposed method is applied to data from Busselton Population Health Surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号