首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this article is to demonstrate the use of the quantile dispersion graphs (QDGs) approach for comparing candidate designs for generalized linear models in the presence of model misspecification in the linear predictor. The proposed design criterion is based on the mean-squared error of prediction which incorporates the prediction variance and the bias caused by fitting the wrong model. The method of kriging is used to estimate the unknown function assumed to be the cause of model misspecification. The QDGs approach is also useful in assessing the robustness of a given design to values of the unknown parameters in the linear predictor. Three numerical examples are presented to illustrate the application of the proposed methodology.  相似文献   

2.
SUMMARY The exact distribution of an analysis of variance estimator of a variance component is obtained by determining its quantiles on the basis of R. B. Davies' algorithm. A plot of these quantiles provides useful information concerning the efficiency of the estimator, including the extent to which it can be negative. Furthermore, the variability in the values of each quantile is assessed by varying the values of the variance components for the model under consideration. The maximum and minimum of such quantile values can then be determined. A plot of the maxima and minima for various selected quantiles produces the so-called 'quantile dispersion graphs'. These graphs can be used to provide a comprehensive picture of the quality of estimation obtained with a particular design. They also provide an effective graphical tool for comparing designs on the basis of their estimation capabilities.  相似文献   

3.
The purpose of this article is to compare efficiencies of several cluster randomized designs using the method of quantile dispersion graphs (QDGs). A cluster randomized design is considered whenever subjects are randomized at a group level but analyzed at the individual level. A prior knowledge of the correlation existing between subjects within the same cluster is necessary to design these cluster randomized trials. Using the QDG approach, we are able to compare several cluster randomized designs without requiring any information on the intracluster correlation. For a given design, several quantiles of the power function, which are directly related to the effect size, are obtained for several effect sizes. The quantiles depend on the intracluster correlation present in the model. The dispersion of these quantiles over the space of the unknown intracluster correlation is determined, and then depicted by the QDGs. Two applications of the proposed methodology are presented.  相似文献   

4.
The quality of estimation of variance components depends on the design used as well as on the unknown values of the variance components. In this article, three designs are compared, namely, the balanced, staggered, and inverted nested designs for the three-fold nested random model. The comparison is based on the so-called quantile dispersion graphs using analysis of variance (ANOVA) and maximum likelihood (ML) estimates of the variance components. It is demonstrated that the staggered nested design gives more stable estimates of the variance component for the highest nesting factor than the balanced design. The reverse, however, is true in case of lower nested factors. A comparison between ANOVA and ML estimation of the variance components is also made using each of the aforementioned designs.  相似文献   

5.
The value at risk (VaR) is a risk measure that is widely used by financial institutions to allocate risk. VaR forecast estimation involves the evaluation of conditional quantiles based on the currently available information. Recent advances in VaR evaluation incorporate conditional variance into the quantile estimation, which yields the conditional autoregressive VaR (CAViaR) models. However, uncertainty with regard to model selection in CAViaR model estimators raises the issue of identifying the better quantile predictor via averaging. In this study, we propose a quasi-Bayesian model averaging method that generates combinations of conditional VaR estimators based on single CAViaR models. This approach provides us a basis for comparing single CAViaR models against averaged ones for their ability to forecast VaR. We illustrate this method using simulated and financial daily return data series. The results demonstrate significant findings with regard to the use of averaged conditional VaR estimates when forecasting quantile risk.  相似文献   

6.
The authors discuss two robust estimators for estimating variance components in the random effects model, and they obtain finite‐sample breakdown points for the estimators. Based on the finite‐sample breakdown point, they propose a criterion for selecting robust designs. With robust designs, one can get efficient and reliable estimates for variance components regardless of outliers which may happen in the experiment. The authors give examples to show the performance of robust estimators and to compare robust designs with optimal designs based on the traditional analysis of variance estimation method.  相似文献   

7.
Copulas characterize the dependence among components of random vectors. Unlike marginal and joint distributions, which are directly observable, the copula of a random vector is a hidden dependence structure that links the joint distribution with its margins. Choosing a parametric copula model is thus a nontrivial task but it can be facilitated by relying on a nonparametric estimator. Here the authors propose a kernel estimator of the copula that is mean square consistent everywhere on the support. They determine the bias and variance of this estimator. They also study the effects of kernel smoothing on copula estimation. They then propose a smoothing bandwidth selection rule based on the derived bias and variance. After confirming their theoretical findings through simulations, they use their kernel estimator to formulate a goodness-of-fit test for parametric copula models.  相似文献   

8.
Random effects models are considered for count data obtained in a cross or nested classification. The main feature of the proposed models is the use of the additive effects on the original scale in contrast to the commonly used log scale. The rationale behind this approach is given. The estimation of variance components is based on the usual mean square approach. Directly analogous results to those from the analysis of variance models for continuous data are obtained. The usual Poisson dispersion test procedure can be used not only to test for no overall random effects but also to assess the adequacy of the model. Individual variance component can be tested by using the usual F-test. To get a reliable estimate, a large number of factor levels seem to be required.  相似文献   

9.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

10.
Much research has been conducted to develop confidence Intervals on linear combinations and ratios of variance components in balanced and unbalanced random models.This paper first presents confidence intervals on functions of variance components in balanced designs.These results assume that classical analysis of variance sums of squares are independent and have exact scaled chi-squared distributions.In unbalanced designs, either one or both of these assumptions are violated, and modifications to the balanced model intervals are required.We report results of some recent work that examines various modifications for some particular unbalanced designs.  相似文献   

11.
12.
For noninformative nonparametric estimation of finite population quantiles under simple random sampling, estimation based on the Polya posterior is similar to estimation based on the Bayesian approach developed by Ericson (J. Roy. Statist. Soc. Ser. B 31 (1969) 195) in that the Polya posterior distribution is the limit of Ericson's posterior distributions as the weight placed on the prior distribution diminishes. Furthermore, Polya posterior quantile estimates can be shown to be admissible under certain conditions. We demonstrate the admissibility of the sample median as an estimate of the population median under such a set of conditions. As with Ericson's Bayesian approach, Polya posterior-based interval estimates for population quantiles are asymptotically equivalent to the interval estimates obtained from standard frequentist approaches. In addition, for small to moderate sized populations, Polya posterior-based interval estimates for quantiles of a continuous characteristic of interest tend to agree with the standard frequentist interval estimates.  相似文献   

13.
The frailty approach is commonly used in reliability theory and survival analysis to model the dependence between lifetimes of individuals or components subject to common risk factors; according to this model the frailty (an unobservable random vector that describes environmental conditions) acts simultaneously on the hazard functions of the lifetimes. Some interesting conditions for stochastic comparisons between random vectors defined in accordance with these models have been described in the literature; in particular, comparisons between frailty models have been studied by assuming independence for the baseline survival functions and the corresponding environmental parameters. In this paper, a generalization of these models is developed, which assumes conditional dependence between the components of the random vector, and some conditions for stochastic comparisons are provided. Some examples of frailty models satisfying these conditions are also described.  相似文献   

14.
The appropriate interpretation of measurements often requires standardization for concomitant factors. For example, standardization of weight for both height and age is important in obesity research and in failure-to-thrive research in children. Regression quantiles from a reference population afford one intuitive and popular approach to standardization. Current methods for the estimation of regression quantiles can be classified as nonparametric with respect to distributional assumptions or as fully parametric. We propose a semiparametric method where we model the mean and variance as flexible regression spline functions and allow the unspecified distribution to vary smoothly as a function of covariates. Similarly to Cole and Green, our approach provides separate estimates and summaries for location, scale and distribution. However, similarly to Koenker and Bassett, we do not assume any parametric form for the distribution. Estimation for either cross-sectional or longitudinal samples is obtained by using estimating equations for the location and scale functions and through local kernel smoothing of the empirical distribution function for standardized residuals. Using this technique with data on weight, height and age for females under 3 years of age, we find that there is a close relationship between quantiles of weight for height and age and quantiles of body mass index (BMI=weight/height2) for age in this cohort.  相似文献   

15.
This paper introduces some robust estimation procedures to estimate quantiles of a continuous random variable based on data, without any other assumptions of probability distribution. We construct a reasonable linear regression model to connect the relationship between a suitable symmetric data transformation and the approximate standard normal statistics. Statistical properties of this linear regression model and its applications are studied, including estimators of quantiles, quartile mean, quartile deviation, correlation coefficient of quantiles and standard errors of these estimators. We give some empirical examples to illustrate the statistical properties and apply our estimators to grouping data.  相似文献   

16.
Dependent data arise in many studies. Frequently adopted sampling designs, such as cluster, multilevel, spatial, and repeated measures, may induce this dependence, which the analysis of the data needs to take into due account. In a previous publication (Geraci and Bottai in Biostatistics 8:140–154, 2007), we proposed a conditional quantile regression model for continuous responses where subject-specific random intercepts were included to account for within-subject dependence in the context of longitudinal data analysis. The approach hinged upon the link existing between the minimization of weighted absolute deviations, typically used in quantile regression, and the maximization of a Laplace likelihood. Here, we consider an extension of those models to more complex dependence structures in the data, which are modeled by including multiple random effects in the linear conditional quantile functions. We also discuss estimation strategies to reduce the computational burden and inefficiency associated with the Monte Carlo EM algorithm we have proposed previously. In particular, the estimation of the fixed regression coefficients and of the random effects’ covariance matrix is based on a combination of Gaussian quadrature approximations and non-smooth optimization algorithms. Finally, a simulation study and a number of applications of our models are presented.  相似文献   

17.
This paper concerns a method of estimation of variance components in a random effect linear model. It is mainly a resampling method and relies on the Jackknife principle. The derived estimators are presented as least squares estimators in an appropriate linear model, and one of them appears as a MINQUE (Minimum Norm Quadratic Unbiased Estimation) estimator. Our resampling method is illustrated by an example given by C. R. Rao [7] and some optimal properties of our estimator are derived for this example. In the last part, this method is used to derive an estimation of variance components in a random effect linear model when one of the components is assumed to be known.  相似文献   

18.
Count data may be described by a Poisson regression model. If random coefficients are involved, maximum likelihood is not feasible and alternative estimation methods have to be employed. For the approach based on quasi-likelihood estimation a characterization of design optimality is derived and optimal designs are determined numerically for an example with random slope parameters.  相似文献   

19.
The paper deals with generalized confidence intervals for the between-group variance in one-way heteroscedastic (unbalanced) ANOVA with random effects. The approach used mimics the standard one applied in mixed linear models with two variance components, where interval estimators are based on a minimal sufficient statistic derived after an initial reduction by the principle of invariance. A minimal sufficient statistic under heteroscedasticity is found to resemble its homoscedastic counterpart and further analogies between heteroscedastic and homoscedastic cases lead us to two classes of fiducial generalized pivots for the between-group variance. The procedures suggested formerly by Wimmer and Witkovský [Between group variance component interval estimation for the unbalanced heteroscedastic one-way random effects model, J. Stat. Comput. Simul. 73 (2003), pp. 333–346] and Li [Comparison of confidence intervals on between group variance in unbalanced heteroscedastic one-way random models, Comm. Statist. Simulation Comput. 36 (2007), pp. 381–390] are found to belong to these two classes. We comment briefly on some of their properties that were not mentioned in the original papers. In addition, properties of another particular generalized pivot are considered.  相似文献   

20.
Small‐area estimation techniques have typically relied on plug‐in estimation based on models containing random area effects. More recently, regression M‐quantiles have been suggested for this purpose, thus avoiding conventional Gaussian assumptions, as well as problems associated with the specification of random effects. However, the plug‐in M‐quantile estimator for the small‐area mean can be shown to be the expected value of this mean with respect to a generally biased estimator of the small‐area cumulative distribution function of the characteristic of interest. To correct this problem, we propose a general framework for robust small‐area estimation, based on representing a small‐area estimator as a functional of a predictor of this small‐area cumulative distribution function. Key advantages of this framework are that it naturally leads to integrated estimation of small‐area means and quantiles and is not restricted to M‐quantile models. We also discuss mean squared error estimation for the resulting estimators, and demonstrate the advantages of our approach through model‐based and design‐based simulations, with the latter using economic data collected in an Australian farm survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号