首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mode of a distribution provides an important summary of data and is often estimated on the basis of some non‐parametric kernel density estimator. This article develops a new data analysis tool called modal linear regression in order to explore high‐dimensional data. Modal linear regression models the conditional mode of a response Y given a set of predictors x as a linear function of x . Modal linear regression differs from standard linear regression in that standard linear regression models the conditional mean (as opposed to mode) of Y as a linear function of x . We propose an expectation–maximization algorithm in order to estimate the regression coefficients of modal linear regression. We also provide asymptotic properties for the proposed estimator without the symmetric assumption of the error density. Our empirical studies with simulated data and real data demonstrate that the proposed modal regression gives shorter predictive intervals than mean linear regression, median linear regression and MM‐estimators.  相似文献   

2.
In the ciassical regression model Yi=h(xi) + ? i, i=1,…,n, Cheng (1984) introduced linear combinations of regression quantiles as a new class of estimators for the unknown regression function h(x). The asymptotic properties studied in Cheng (1984) are reconsidered. We obtain a sharper scrong consistency rate and we improve on the conditions for asymptotic normality by proving a new result on the remainder term in the Bahadur representation for regression quantiles.  相似文献   

3.
A class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles ( Koenker and Bassett ( 1978 ) ) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means ( see De Jongh et al ( 1988 ) ) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.  相似文献   

4.
In biomedical studies, correlated failure time data arise often. Although point and confidence interval estimation for quantiles with independent censored failure time data have been extensively studied, estimation for quantiles with correlated failure time data has not been developed. In this article, we propose a nonparametric estimation method for quantiles with correlated failure time data. We derive the asymptotic properties of the quantile estimator and propose confidence interval estimators based on the bootstrap and kernel smoothing methods. Simulation studies are carried out to investigate the finite sample properties of the proposed estimators. Finally, we illustrate the proposed method with a data set from a study of patients with otitis media.  相似文献   

5.
A general nonparametric imputation procedure, based on kernel regression, is proposed to estimate points as well as set- and function-indexed parameters when the data are missing at random (MAR). The proposed method works by imputing a specific function of a missing value (and not the missing value itself), where the form of this specific function is dictated by the parameter of interest. Both single and multiple imputations are considered. The associated empirical processes provide the right tool to study the uniform convergence properties of the resulting estimators. Our estimators include, as special cases, the imputation estimator of the mean, the estimator of the distribution function proposed by Cheng and Chu [1996. Kernel estimation of distribution functions and quantiles with missing data. Statist. Sinica 6, 63–78], imputation estimators of a marginal density, and imputation estimators of regression functions.  相似文献   

6.
ABSTRACT

The conditional density offers the most informative summary of the relationship between explanatory and response variables. We need to estimate it in place of the simple conditional mean when its shape is not well-behaved. A motivation for estimating conditional densities, specific to the circular setting, lies in the fact that a natural alternative of it, like quantile regression, could be considered problematic because circular quantiles are not rotationally equivariant. We treat conditional density estimation as a local polynomial fitting problem as proposed by Fan et al. [Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika. 1996;83:189–206] in the Euclidean setting, and discuss a class of estimators in the cases when the conditioning variable is either circular or linear. Asymptotic properties for some members of the proposed class are derived. The effectiveness of the methods for finite sample sizes is illustrated by simulation experiments and an example using real data.  相似文献   

7.
Non-parametric Quantile Regression with Censored Data   总被引:1,自引:0,他引:1  
Abstract.  Censored regression models have received a great deal of attention in both the theoretical and applied statistics literature. Here, we consider a model in which the response variable is censored but not the covariates. We propose a new estimator of the conditional quantiles based on the local linear method, and give an algorithm for its numerical implementation. We study its asymptotic properties and evaluate its performance on simulated data sets.  相似文献   

8.
This paper develops a varying-coefficient approach to the estimation and testing of regression quantiles under randomly truncated data. In order to handle the truncated data, the random weights are introduced and the weighted quantile regression (WQR) estimators for nonparametric functions are proposed. To achieve nice efficiency properties, we further develop a weighted composite quantile regression (WCQR) estimation method for nonparametric functions in varying-coefficient models. The asymptotic properties both for the proposed WQR and WCQR estimators are established. In addition, we propose a novel bootstrap-based test procedure to test whether the nonparametric functions in varying-coefficient quantile models can be specified by some function forms. The performance of the proposed estimators and test procedure are investigated through simulation studies and a real data example.  相似文献   

9.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

10.
We develop exact inference for the location and scale parameters of the Laplace (double exponential) distribution based on their maximum likelihood estimators from a Type-II censored sample. Based on some pivotal quantities, exact confidence intervals and tests of hypotheses are constructed. Upon conditioning first on the number of observations that are below the population median, exact distributions of the pivotal quantities are expressed as mixtures of linear combinations and of ratios of linear combinations of standard exponential random variables, which facilitates the computation of quantiles of these pivotal quantities. Tables of quantiles are presented for the complete sample case.  相似文献   

11.
We introduce a new class of distributions called the Weibull Marshall–Olkin-G family. We obtain some of its mathematical properties. The special models of this family provide bathtub-shaped, decreasing-increasing, increasing-decreasing-increasing, decreasing-increasing-decreasing, monotone, unimodal and bimodal hazard functions. The maximum likelihood method is adopted for estimating the model parameters. We assess the performance of the maximum likelihood estimators by means of two simulation studies. We also propose a new family of linear regression models for censored and uncensored data. The flexibility and importance of the proposed models are illustrated by means of three real data sets.  相似文献   

12.
A new nonparametric quantile regression method based on the concept of optimal quantization was developed recently and was showed to provide estimators that often dominate their classical, kernel-type, competitors. In the present work, we extend this method to multiple-output regression problems. We show how quantization allows approximating population multiple-output regression quantiles based on halfspace depth. We prove that this approximation becomes arbitrarily accurate as the size of the quantization grid goes to infinity. We also derive a weak consistency result for a sample version of the proposed regression quantiles. Through simulations, we compare the performances of our estimators with (local constant and local bilinear) kernel competitors. The results reveal that the proposed quantization-based estimators, which are local constant in nature, outperform their kernel counterparts and even often dominate their local bilinear kernel competitors. The various approaches are also compared on artificial and real data.  相似文献   

13.
In this article, a new composite quantile regression estimation approach is proposed for estimating the parametric part of single-index model. We use local linear composite quantile regression (CQR) for estimating the nonparametric part of single-index model (SIM) when the error distribution is symmetrical. The weighted local linear CQR is proposed for estimating the nonparametric part of SIM when the error distribution is asymmetrical. Moreover, a new variable selection procedure is proposed for SIM. Under some regularity conditions, we establish the large sample properties of the proposed estimators. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.  相似文献   

14.
The present article deals with the problem of estimation of parameters in a linear regression model when some data on response variable is missing and the responses are equi-correlated. The ordinary least squares and optimal homogeneous predictors are employed to find the imputed values of missing observations. Their efficiency properties are analyzed using the small disturbances asymptotic theory. The estimation of regression coefficients using these imputed values is also considered and a comparison of estimators is presented.  相似文献   

15.
This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators.  相似文献   

16.
17.
We study model selection and model averaging in semiparametric partially linear models with missing responses. An imputation method is used to estimate the linear regression coefficients and the nonparametric function. We show that the corresponding estimators of the linear regression coefficients are asymptotically normal. Then a focused information criterion and frequentist model average estimators are proposed and their theoretical properties are established. Simulation studies are performed to demonstrate the superiority of the proposed methods over the existing strategies in terms of mean squared error and coverage probability. Finally, the approach is applied to a real data case.  相似文献   

18.
This paper contrasts two approaches to estimating quantile regression models: traditional semi-parametric methods and partially adaptive estimators using flexible probability density functions (pdfs). While more general pdfs could have been used, the skewed Laplace was selected for pedagogical purposes. Monte Carlo simulations are used to compare the behavior of the semi-parametric and partially adaptive quantile estimators in the presence of possibly skewed and heteroskedastic data. Both approaches accommodate skewness and heteroskedasticity which are consistent with linear quantiles; however, the partially adaptive estimator considered allows for non linear quantiles and also provides simple tests for symmetry and heteroskedasticity. The methods are applied to the problem of estimating conditional quantile functions for wages corresponding to different levels of education.  相似文献   

19.
We consider a replicated ultrastructural measurement error regression model where predictor variables are observed with error. It is assumed that some prior information regarding the regression coefficients is available in the form of exact linear restrictions. Three classes of estimators of regression coefficients are proposed. These estimators are shown to be consistent as well as satisfying the given restrictions. The asymptotic properties of unrestricted as well as restricted estimators are studied without imposing any distributional assumption on any random component of the model. A Monte Carlo simulations study is performed to assess the effect of sample size, replicates and non-normality on the estimators.  相似文献   

20.
We introduce the log-odd Weibull regression model based on the odd Weibull distribution (Cooray, 2006). We derive some mathematical properties of the log-transformed distribution. The new regression model represents a parametric family of models that includes as sub-models some widely known regression models that can be applied to censored survival data. We employ a frequentist analysis and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to assess global influence. Further, for different parameter settings, sample sizes and censoring percentages, some simulations are performed. In addition, the empirical distribution of some modified residuals are given and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to check the model assumptions. The extended regression model is very useful for the analysis of real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号