首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We consider failure time regression analysis with an auxiliary variable in the presence of a validation sample. We extend the nonparametric inference procedure of Zhou and Pepe to handle a continuous auxiliary or proxy covariate. We estimate the induced relative risk function with a kernel smoother and allow the selection probability of the validation set to depend on the observed covariates. We present some asymptotic properties for the kernel estimator and provide some simulation results. The method proposed is illustrated with a data set from an on-going epidemiologic study.  相似文献   

2.
A flexible Bayesian semiparametric accelerated failure time (AFT) model is proposed for analyzing arbitrarily censored survival data with covariates subject to measurement error. Specifically, the baseline error distribution in the AFT model is nonparametrically modeled as a Dirichlet process mixture of normals. Classical measurement error models are imposed for covariates subject to measurement error. An efficient and easy-to-implement Gibbs sampler, based on the stick-breaking formulation of the Dirichlet process combined with the techniques of retrospective and slice sampling, is developed for the posterior calculation. An extensive simulation study is conducted to illustrate the advantages of our approach.  相似文献   

3.
There has been extensive interest in discussing inference methods for survival data when some covariates are subject to measurement error. It is known that standard inferential procedures produce biased estimation if measurement error is not taken into account. With the Cox proportional hazards model a number of methods have been proposed to correct bias induced by measurement error, where the attention centers on utilizing the partial likelihood function. It is also of interest to understand the impact on estimation of the baseline hazard function in settings with mismeasured covariates. In this paper we employ a weakly parametric form for the baseline hazard function and propose simple unbiased estimating functions for estimation of parameters. The proposed method is easy to implement and it reveals the connection between the naive method ignoring measurement error and the corrected method with measurement error accounted for. Simulation studies are carried out to evaluate the performance of the estimators as well as the impact of ignoring measurement error in covariates. As an illustration we apply the proposed methods to analyze a data set arising from the Busselton Health Study [Knuiman, M.W., Cullent, K.J., Bulsara, M.K., Welborn, T.A., Hobbs, M.S.T., 1994. Mortality trends, 1965 to 1989, in Busselton, the site of repeated health surveys and interventions. Austral. J. Public Health 18, 129–135].  相似文献   

4.
This article presents generalized semiparametric regression models for conditional cumulative incidence functions with competing risks data when covariates are missing by sampling design or happenstance. A doubly robust augmented inverse probability weighted (AIPW) complete-case approach to estimation and inference is investigated. This approach modifies IPW complete-case estimating equations by exploiting the key features in the relationship between the missing covariates and the phase-one data to improve efficiency. An iterative numerical procedure is derived to solve the nonlinear estimating equations. The asymptotic properties of the proposed estimators are established. A simulation study examining the finite-sample performances of the proposed estimators shows that the AIPW estimators are more efficient than the IPW estimators. The developed method is applied to the RV144 HIV-1 vaccine efficacy trial to investigate vaccine-induced IgG binding antibodies to HIV-1 as correlates of acquisition of HIV-1 infection while taking account of whether the HIV-1 sequences are near or far from the HIV-1 sequences represented in the vaccine construct.  相似文献   

5.
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号