首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most material requirements planning (MRP) systems apply standard costing (absorption costing) approaches to define setup costs that are used as fixed (time invariant) setup parameters in single-level lot-sizing methods. This paper presents a computationally simple approach for estimating more appropriate setup parameters based on estimates of work-center shadow prices. These setup parameters then are used in traditional single-level MRP lot-sizing procedures. The shadow price of capacity at each work center is calculated as the increase in the overall inventory carrying cost for each additional hour of capacity lost to setups. The opportunity cost of a setup for an order subsequently is determined based on the routing information for each order and is used by traditional MRP lot-sizing procedures to calculate lot sizes. A simulation experiment compares the performance period order quantity lot sizing with capacity-sensitive setup parameters with the fixed accounting-based setup parameters. The simulation replicates the planning and control functions of a typical MRP system. The results of the experiment show that capacity-sensitive setup parameters can make significant reductions in both carrying cost and lateness and can achieve many of the benefits of optimized production technology in the context of an MRP system.  相似文献   

2.
Many American firms are implementing just-in-time production in order to minimize inventories, reduce flow time, and maximize resource utilization. These firms recognize that, in the short run, setup costs really are fixed expenses and it is available capacity which is the critical factor in determining production-run quantities. We propose using available capacity to increase the number of setups and reduce lot-size inventories. This results in improved relevant cost performance. Sugimori, Kusunoki, Cho, and Uchikawa [16] in their paper on the Toyota kanban system developed a relationship for lead time but failed to use it for lot sizing. We use this relationship to develop the joint lot-sizing rule. The efficacy of our proposed rule is demonstrated by applying it to lot-size scheduling problems at the John Deere Engine Works [14]. Extensions of the proposed rule to undercapacity situations with material-wastage costs in the setup processes and to multistate production inventory systems also are discussed.  相似文献   

3.
This study revisits the traditional single stage, multi-item, capacitated lot-sizing problem (CLSP) with a new integrative focus on problem structuring. Unlike past research, we develop integrative cycle scheduling approaches which simultaneously address lot-sizing, capacity, and sequencing issues. Our purposes are to (1) explore the effect of sequencing on inventory levels, (2) examine the problem of infeasibility in the economic lot scheduling problem (ELSP), and (3) provide a simple methodology of generating low-cost cycle schedules in an environment with discrete shipping, dynamic demands, limited capacity, zero setup cost, and sequence-independent setup times. Our procedures are compared to benchmark cycle scheduling approaches in terms of both inventory cost and computation time under different demand scenarios, using the operating data from a flexible assembly system (FAS) at the Ford Motor Company's Sandusky, Ohio plant.  相似文献   

4.
5.
《Omega》2005,33(2):163-174
In this research we consider a single-manufacturer single-buyer supply chain problem where the manufacturer orders raw materials from its supplier, then using its manufacturing processes converts the raw materials to finished goods, and finally delivers the finished goods to its customer. The manufacturer produces the product in batches at a finite rate and periodically delivers the finished goods at a fixed lot size to its customer, who has a constant demand rate. An integrated inventory control model, making joint economic lot sizes of manufacturer's raw material ordering, production batch, and buyer's ordering, is developed to minimize the mean total cost per unit time of the raw materials ordering and holding, manufacturer's setup and finished goods holding, the buyer's ordering, and inventory holding. Numerical examples are also setup to illustrate that jointly considering the inventory costs above results in less mean total cost than that of considering them separately.  相似文献   

6.
This study investigates how lot sizing techniques influence the profit performance, inventory level, and order lardiness of an assembly job shop controlled by MRP. Four single-level lot sizing techniques are compared by simulation analysis under two levels of master schedule instability and two levels of end item demand. A second analysis investigates the influence of a multilevel lot sizing technique, the generalized constrained-K (GCK) cost modification, on the four single-level techniques at low demand and low nervousness. The analyses reveal a previously unreported phenomenon. Given the same inventory costs, the single-level lot sizing techniques generate substantially different average batch sizes. The lot sizing techniques maintain the following order of increasing average batch size (and decreasing total setup time):

economic order quantity (EOQ)

period order quantity (POQ)

least total cost (LTC)

Silver-Meal heuristic (SML)

The causes for different average batch sizes among the lot sizing techniques are analysed and explained. Demand lumpiness, inherent in multilevel manufacturing systems controlled by MRP, is found to be a major factor. The number of setups each lot sizing technique generates is the primary determinant of profit performance, inventory level, and order tardiness. EOQ, a fixed order quantity technique, is less sensitive to nervousness than the discrete lot sizing techniques. EOQ_, however, generates the smallest average batch size, and, therefore, the most setups. Since setups consume capacity, EOQ, is more sensitive to higher demand. SML generates the largest average batch sizes, and is, therefore, less sensitive to increased demand. At low demand, the other lot sizing techniques perform better on all criteria. They generate smaller batches and, therefore, shorter actual lead times. The GCK cost modification increases the average batch size generated by each lot sizing technique. GCK improves the profit and customer service level of EOQ the lot sizing technique with the smallest batches. GCK causes the other lot sizing techniques to generate excessively large batches and, therefore, excessively long actual lead times.  相似文献   

7.
Coordinated replenishment problems are common in manufacturing and distribution when a family of items shares a common production line, supplier, or a mode of transportation. In these situations the coordination of shared, and often limited, resources across items is economically attractive. This paper describes a mixed‐integer programming formulation and Lagrangian relaxation solution procedure for the single‐family coordinated capacitated lot‐sizing problem with dynamic demand. The problem extends both the multi‐item capacitated dynamic demand lot‐sizing problem and the uncapacitated coordinated dynamic demand lot‐sizing problem. We provide the results of computational experiments investigating the mathematical properties of the formulation and the performance of the Lagrangian procedures. The results indicate the superiority of the dual‐based heuristic over linear programming‐based approaches to the problem. The quality of the Lagrangian heuristic solution improved in most instances with increases in problem size. Heuristic solutions averaged 2.52% above optimal. The procedures were applied to an industry test problem yielding a 22.5% reduction in total costs.  相似文献   

8.
We consider the optimal lot‐sizing policy for an inventoried item when the vendor offers a limited‐time price reduction. We use the discounted cash flow (DCF) approach in our analysis, thereby eliminating the sources of approximation found in most of the earlier studies that use an average annual cost approach. We first characterize the optimal lot‐sizing policies and their properties, then develop an algorithm for determining the optimal lot sizes. We analytically demonstrate that the lot sizes derived using an average annual cost approach for the different variants of the problem are, in general, larger than the DCF optimum. While DCF analysis is more rigorous and yields precise lot sizes, we recognize that the associated mathematical models and the solution procedure are rather complex. Since simple and easy‐to‐understand policies have a strong practical appeal to decision makers, we propose a DCF version of a simple and easy‐to‐implement heuristic called the “Early Purchase” (EP) strategy and discuss its performance. We supplement our analytical developments with a detailed computational analysis and discuss the implications of our findings for decision making.  相似文献   

9.
In recent years the reported successes of Japanese production systems, particularly the just-in-time approach to inventory control, has caused managers to focus more of their attention on efficient decision-making procedures for determining production schedules that minimize inventory costs. One such potential area of attention is the economic lot-scheduling problem (ELSP), which occurs in a variety of manufacturing environments where machining operations are prevalent. The economic lot-scheduling problem addresses the determination of lot sizes for N products with constant demand (and cycled through one machine with a given production rate) to minimize setup and inventory costs. The most successful solution approaches to the ELSP have been based on the concept of a basic period that is of sufficient length for the production of all items, even though each item might not be produced during each repetition of the basic period. This paper proposes a heuristic approach to the solution of the ELSP (referred to as the method of prime subperiods), which is an extension of the basic period approaches. The procedure is described and demonstrated via an example and then tested using a set of six example problems previously employed in the literature related to the ELSP. The results indicate as good or superior performance by the proposed method of prime subperiods.  相似文献   

10.
This paper is an extension of Billington, who used the framework of the economic production quantity (EPQ) to model setup cost reduction. In the present paper, we use the EPQ model as a starting point to investigate the nature of setup costs and the effect of setup time reduction on the increase in available capacity. Reducing setup is vital to a company's success because a lengthy changeover of machinery is expensive: it demands long production runs to justify its cost, and these, in turn, lead to excessive inventory and to a slow response to customer needs. As in Billington, setup reduction is modeled as a function of an annual amortized investment. The paper examines the behavior of the setup time, the inventory cost, the lot size, and the freeing up of machine time in the face of a capacity constraint. A solution algorithm is provided to find setup times that minimize the sum of setup and holding cost, subject to a constraint on machine availability. The analysis sheds light on the true nature of setup cost and on the opportunity cost of not reducing setups. In the constrained optimization, the Lagrangian multiplier gives an estimate of the marginal value of adding one time unit of machine capacity, or, alternatively, of reducing one unit of setup time.  相似文献   

11.
We examine a new algorithm developed by Kuzdrall and Britney [5] for locating the optimal order quantity in the presence of quantity discounts. Their algorithm, based on a model for the supplier's formulation of the price schedule, involves a regression analysis to identify the supplier's variable cost per unit and the fixed cost that the supplier seeks to recover, followed by an iterative search for the optimum. The authors describe this method as a “convenient alternative to the aimless searching of traditional approaches” [5, p. 101]. We examine the allegation of superiority of their total setup lot-sizing model over the classical method and dispute their claim of superiority.  相似文献   

12.

In this paper, we investigate the effect of the warranty cost on optimization of the economic manufacturing quality (EMQ). This is done for a deteriorating process where the production process shifts from the in-control state to the out-of-control state following a general discrete probability distribution. Once the production process goes out of control, the production process produces some defective items. The defective item cost includes reworking and warranty costs. Thus, in order to economically operate a production-inventory system with products sold under warranty, the tradeoffs among the production setup, inventory, and defective item cost, including the reworked cost before sale and the warranty cost after sale, needed to be analysed. This objective in this paper is to determine the production lot size while minimizing the total cost per unit of time per unit of time. Various special cases are presented. Two of them are extensions of results obtained previously in the literature. Finally, a numerical example is given which uses a discrete Weibull probability distribution. Sensitivity analysis of the model with respect to cost and time parameters is also performed.  相似文献   

13.
In this article we address the optimal quantity discount design problem of a supplier in a two‐stage supply chain where the supplier and the buyer share annual demand information only. The supply chain faces a constant deterministic demand that is not price sensitive and operates with fixed setup costs in both stages. We show that the supplier can actually moderate a cost‐minimizing buyer to order in quantities different than the buyer's optimal order quantity in the traditional setting and develop a multi‐breakpoint quantity discount scheme that maximizes supplier's expected net savings. The proposed multi‐breakpoint discount scheme can be easily computed from the available information and, while also maximizing the supplier's net savings, is very effective in achieving high levels of supply chain coordination efficiency in the presence of limited information.  相似文献   

14.
This study investigates how different lot sizing techniques influence the cumulative lead time for multi-level production-inventory systems controlled by material requirements planning (MRP). Theoretical approaches, a numerical example, as well as simulation are used to analyse and illustrate the combined effect of lot sizing at different product structure levels. It is shown that lot-sizing requirements for more than a single period, such as fixed period requirements, period under quantity, Silver Meal algorithm, as well as economic order quantity will lead to longer actual cumulative lead times than would be expected, when taking the item lead times along the critical path through the product structure into account. Consequently, MRP will underestimate the cumulative lead time and will require a longer planning horizon. We show that the extension of the cumulative lead techniques covering the time is a lot-sizing related phenomenon and cannot be accounted for by, e.g. using safety lead time. Lot-sizing techniques with multi-period coverage will only occasionally provide the 'expected' cumulative lead time. We also show that average and maximum throughput times, as well as throughput time variability increases with increasing time-period coverage of lots.  相似文献   

15.
The objective of this research is to investigate the effects of setup-cost estimating methods on the lot sizing and scheduling of multiple products in multiple periods. These initial setup cost estimators (ISCEs) are used to estimate sequence-independent initial setup costs from sequence-dependent setup costs. A search of the literature reveals that, although sequence-dependent setup costs are frequently found in practice and ISCEs are frequently used, there is a dearth of research concerning the effect of using ISCEs. After a review of the literature, a mixed integer formulation of the joint problem of lot sizing and scheduling is presented, followed by a discussion of the difficulty in solving the formulation. Next, the six ISCEs evaluated are presented. These ISCEs range from simple (select the minimum setup cost) to complex (use the branch-and-bound solution to a traveling salesman-type problem). Each ISCE is evaluated using a full factorial design with five independent variables: demand distribution (three levels), demand trend (three levels), setup to inventory level (six levels), setup distribution (three levels), and setup variability (two levels). Two hypotheses are researched. Do the more computationally complex ISCEs produce lower overall costs than do the simpler ISCEs? Does the reduction in total cost justify the additional computation cost? The results of this study demonstrate that it may be incorrect to use “conventional wisdom'’when selecting an ISCE.  相似文献   

16.
The formulation of the classic economic production quantity (EPQ) model is extended to include setup cost as a function of capital expense. Additional capital will buy reduced setup cost. Thus, the objective now is to balance holding, setup, and capital expenses. This new formulation is solved under conditions where setup cost varies exponentially and linearly as a function of capital expense. Decision rules are formulated to indicate under what conditions setup cost reduction reduces total cost. For the linear function, it is shown that once the decision to reduce setup cost is justified, the optimal choice is the minimum setup cost that is technologically feasible.  相似文献   

17.
We study the deterministic time‐varying demand lot‐sizing problem in which learning and forgetting in setups and production are considered simultaneously. It is an extension of Chiu's work. We propose a near‐optimal forward dynamic programming algorithm and suggest the use of a good heuristic method in a situation in which the computational effort is extremely intolerable. Several important observations obtained from a two‐phase experiment verify the goodness of the proposed algorithm and the chosen heuristic method.  相似文献   

18.
We present an analysis of setup cost reduction using the economic production quantity model. The objectives of the paper are to draw conclusions by investigating several classes of setup reduction functions and to provide a general solution procedure. We examine the trade-offs between reduced inventories and increased capital investment and show that given any hypothetical setup cost reduction function, we can determine whether the total relevant cost can be reduced and how the reduction is achieved.  相似文献   

19.
Sharing common production, resources, and services to reduce cost are important for not for profit operations due to limited and mission‐oriented budget and effective cost allocation mechanisms are essential for encouraging effective collaborations. In this study, we illustrate how rigorous methodologies can be developed to derive effective cost allocations to facilitate sustainable collaborations in not for profit operations by modeling the cost allocation problem arising from an economic lot‐sizing (ELS) setting as a cooperative game. Specifically, we consider the economic lot‐sizing (ELS) game with general concave ordering cost. In this cooperative game, multiple retailers form a coalition by placing joint orders to a single supplier in order to reduce ordering cost. When both the inventory holding cost and backlogging cost are linear functions, it can be shown that the core of this game is non‐empty. The main contribution of this study is to show that a core allocation can be computed in polynomial time under the assumption that all retailers have the same cost parameters. Our approach is based on linear programming (LP) duality. More specifically, we study an integer programming formulation for the ELS problem and show that its LP relaxation admits zero integrality gap, which makes it possible to analyze the ELS game by using LP duality. We show that there exists an optimal dual solution that defines an allocation in the core. An interesting feature of our approach is that it is not necessarily true that every optimal dual solution defines a core allocation. This is in contrast to the duality approach for other known cooperative games in the literature.  相似文献   

20.
This paper presents an easily understood and computationally efficient heuristic algorithm for the capacitated lot sizing problem (CLSP), the single machine lot-sizing problem, with nonstationary costs, demands, and setup times. The algorithm solves problems with setup time or setup cost. A variation of the algorithm can solve problems when limited amounts of costly overtime are allowed. Results of experimentation indicate that the most significant effects on solution quality are due to the level of setup costs relative to holding costs and the size of the problems as determined by the number of items. Also affecting solution quality are tightness of the capacity constraint and variability of demand in a problem. When the capacity constraint is extremely tightly binding, it sometimes has difficulty finding solutions that do not require overtime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号