首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper extends the studies by Sridharan, Berry, and Udayabhanu from single-level MPS systems to multilevel material requirements planning (MRP) systems, and examines the impact of product structure, lot-sizing rules and cost parameters upon the selection of MPS freezing parameters under deterministic demand. A model is built to simulate the master production scheduling and material requirements planning operations in a make-to-order environment. The results show that all the MPS freezing parameters studied have a significant impact upon total inventory costs and schedule instability in multilevel MRP systems. First, the order-based freezing method is preferable to the period-based method. Secondly, the study finds that increasing the freezing proportion reduces both total inventory costs and schedule instability. This finding contradicts the finding by Sridharan et al. in single-level systems. Thirdly, the study finds that a higher replanning periodicity results in both lower total inventory cost and lower schedule instability. The study also indicates that the product structure and lot-sizing rules do not significantly influence the selection of MPS freezing parameters in a practical sense under most situations. However, the cost parameter seems to significantly influence the selection of replanning periodicity.  相似文献   

2.
Managing the trade-off between achieving a stable master production schedule (MPS) and being responsive to changes in customer requirements is a difficult problem in many firms where providing a high level of customer service is viewed as an important competitive factor. One alternative for managing this trade-off is to freeze an agreed portion of the MPS. This paper investigates the impact of adjustments in the design parameters of MPS freezing methods on two performance measures (MPS lot-sizing cost and stability) under stochastic demand conditions in a rolling planning horizon environment given a service level target. Simulation experiments are reported which indicate that many of the conclusions regarding the design of MPS freezing methods obtained under deterministic demand conditions hold under stochastic demand.  相似文献   

3.
Previous research examining alternative ways of dealing with schedule instability has shown that freezing a portion of the master production schedule (MPS) is a cost effective way to reduce instability. While it is often argued that MPS freezing limits the firm's ability to react to changing customer needs, the impact of freezing on customer service is not well understood. We examined the impact of freezing a specified portion of the MPS on the average fill rate under a wide variety of conditions using controlled simulation experiments. The results show that freezing can be implemented without causing a severe reduction in customer service.  相似文献   

4.
Previous research on material requirements planning (MRP) systems has rarely considered the impact of the master production scheduling method used to promise customer orders and to allocate production capacity. Based on a simulation study of an MRP environment, we show that the correct selection of a master production schedule (MPS) method depends on the variance of end-item demand. In addition, we find evidence that the effectiveness of a particular MPS method can be enhanced by holding buffer inventory at the same level in the product structure as in the MPS.  相似文献   

5.

Master production schedules are usually updated by the use of a rolling schedule. Previous studies on rolling schedules seem to form the consensus that frequent replanning of a master production schedule (MPS) can increase costs and schedule instability. Building on previous research on rolling schedules, this study addresses the impact of overestimation or underestimation of demand on the rolling horizon MPS cost performance for various replanning frequencies. The MPS model developed in this paper is based on actual data collected from a paint company. Results indicate that under both the forecast errors conditions investigated in this study, a two-replanning interval provided the best MPS cost performance for this company environment. However, results from the sensitivity analysis performed on the MPS model indicate that when the setup and inventory carrying costs are high, a 1-month replanning frequency (frequent replanning) seems more appropriate for both of the above forecast error scenarios.  相似文献   

6.
This paper is concerned with planning work-center capacity levels in manufacturing firms that employ a material requirements planning (MRP) system. It presents four procedures for developing work-center capacity plans designed to insure the production of components and assemblies as specified by the MRP plan and the master production schedule (MPS). These procedures (capacity planning using overall factors, capacity bills, resource profiles, and capacity requirements planning) are compared using simulation analysis. The results indicate that the performance of a procedure when measured against the MPS depends on the operating conditions of the manufacturing system. The results also indicate that the choice of a particular procedure often represents a compromise among the benefits of improved MPS performance, the costs of preparing and processing data, and the premium expenses required for more frequent adjustments in work-center capacity levels.  相似文献   

7.
This study addresses the problem of replanning frequency for a rolling horizon master production schedule (MPS) in a process industry environment under demand certainty. The major contribution of this paper is the demonstration of how the appropriate replanning frequency for a MPS can be determined under the conditions of minimum batch-size production restrictions in a rolling planning horizon setting. In addition, the problem environment for this study is an actual MPS operation that includes features such as multiple production lines, multiple products, capacity constraints, minimum inventory requirements, and multiple goals. Actual data from a paint company are used to determine the appropriate replanning frequency for a rolling horizon MPS. Results indicate that a 2-month replanning frequency was the best at this firm because of the significant cost savings it provided when compared to actual company performance and the other replanning intervals.  相似文献   

8.
Within the sequential framework of material requirements planning (MRP), a master production schedule (MPS) of end-item production is prepared and a bill-of-material processor is used to convert the MPS into a plan for needed subassemblies, parts, and materials. This study examines the impact of different procedures for considering inventory-related costs and capacity limitations in the two phases of planning: master production scheduling and bill-of-material (BOM) processing. A total of nine procedures are considered for integrating the two phases of planning. The results indicate that the integrated procedures have a significant effect on the trade-offs among inventory-related costs, work load variations, over/under time costs, and excess work loads. Further, the results suggest that the method used to develop the MPS has the primary influence on these trade-offs, but the method used by the BOM processor can sometimes have a moderating effect.  相似文献   

9.
In uncertain environments, the master production schedule (MPS) is usually developed using a rolling schedule. When utilizing a rolling schedule, the MPS is replanned periodically and a portion of the MPS is frozen in each planning cycle. The cost performance of a rolling schedule depends on three decisions: the choice of the replanning interval (R), which determines how often the MPS should be replanned; the choice of the frozen interval (F), which determines how many periods the MPS should be frozen in each planning cycle; and the choice of the forecast window (T), which is the time interval over which the MPS is determined using newly updated forecast data. This paper uses an analytical approach to study the master production scheduling process in uncertain environments without capacity constraints, where the MPS is developed using a rolling schedule. It focuses on the choices of F, R, and T for the MPS. A conceptual framework that includes all important MPS time intervals is described. The effects of F, R, and T on system costs, which include the forecast error, MPS change, setup, and inventory holding costs, are also explored. Finally, a mathematical model for the MPS is presented. This model approximates the average system cost as a function of F, R, T, and several environmental factors. It can be used to estimate the associated system costs for any combination of F, R, and T.  相似文献   

10.
Make‐to‐order (MTO) manufacturers must ensure concurrent availability of all parts required for production, as any unavailability may cause a delay in completion time. A major challenge for MTO manufacturers operating under high demand variability is to produce customized parts in time to meet internal production schedules. We present a case study of a producer of MTO offshore oil rigs that highlights the key aspects of the problem. The producer was faced with an increase in both demand and demand variability. Consequently, it had to rely heavily on subcontracting to handle production requirements that were in excess of its capacity. We focused on the manufacture of customized steel panels, which represent the main sub‐assemblies for building an oil rig. We considered two key tactical parameters: the planning window of the master production schedule and the planned lead time of each workstation. Under the constraint of a fixed internal delivery lead time, we determined the optimal planning parameters. This improvement effort reduced the subcontracting cost by implementing several actions: the creation of a master schedule for each sub‐assembly family of the steel panels, the smoothing of the master schedule over its planning window, and the controlling of production at each workstation by its planned lead time. We report our experience in applying the analytical model, the managerial insights gained, and how the application benefits the oil‐rig producer.  相似文献   

11.
Maintaining a stable master production schedule (MPS) is difficult for many firms, especially when material requirements planning is used to manage production operations. This paper is concerned with the problem of measuring MPS stability, and the impact on stability of three important decision variables in managing the MPS within a rolling-horizon framework in a make-to-stock environment: the method used to freeze the MPS, the proportion of the MPS frozen, and the length of the planning horizon for the MPS. Simulation experiments conducted to determine the impact of these decision variables, as well as other important product demand and cost characteristics, on MPS stability are reported. The results indicate MPS stability can be influenced by managerial action directed toward management of the MPS as well as changes in important product cost and requirements characteristics.  相似文献   

12.
As manufacturing firms push to achieve shorter lead times and higher levels of customer service, the basic capability of underlying manufacturing processes must be reexamined. The capacity and operational variability of a process dictate a certain set of realistic performance goals. In this paper, we examine this fundamental relationship from an economic perspective using two levels of analysis. At the aggregate level, we model the manufacturing process as a single server queue and compare the traditional roles of marketing and manufacturing in setting performance and process design parameters. Insights gained at this level are incorporated into the analysis of a realistic multiserver, multistation manufacturing line. We develop an interaction decision tool to guide the selection of process and performance parameters in this more complex environment.  相似文献   

13.

In this paper, a simulation experiment has been developed to examine the combined influence of the design, inventory and environmental factors on the cost performance of a rolling horizon master production schedule. Specifically, a 2 5 factorial design was used to examine the effects associated with three rolling schedule design policies, one inventory policy and one environmental condition of forecast error on MPS cost performance. The study was based on actual data from a paint company. Results suggest that the choice of appropriate lot-size and inventory policies have a significant influence on MPS costs and that there are indeed important interactions between these policies and other design factors of a rolling schedule.  相似文献   

14.
This paper studies the master production scheduling (MPS) activity of manufacturing firms that produce assemble-to-order (ATO) products. It describes four techniques for master scheduling ATO products: end-product bills, modular bills, super bills, and percentage bills. These procedures are compared in terms of the percentage of customer orders delivered late, the mean tardiness of customer order deliveries, and the total cost of inventory using simulation analysis. The results indicate that the performance of an MPS technique is affected by the level of uncertainty of the end products' demands and the degree of component commonality in the product structure. In particular, modular bills produce the highest customer service level and super bills produce the lowest total inventory cost under most operating conditions. The conclusions also suggest that the choice of a particular MPS technique is often a compromise between the benefits of improved MPS performance and the costs of implementing and executing the MPS system.  相似文献   

15.
This research considers a multi‐item newsvendor problem with a single capacity constraint. While this problem has been addressed in the literature, the focus here is on developing simple, closed‐form expressions for the order quantities. The benefit of such an approach is that the solutions are straightforward to calculate and have managerial appeal. Additionally, we show these expressions to be optimal under a variety of conditions. For more general cases when these optimality conditions do not hold, we use these expressions as heuristic solutions. Via computational studies, we demonstrate that these heuristics are extremely effective when the optimality conditions are not satisfied.  相似文献   

16.
Typical forecast-error measures such as mean squared error, mean absolute deviation and bias generally are accepted indicators of forecasting performance. However, the eventual cost impact of forecast errors on system performance and the degree to which cost consequences are explained by typical error measures have not been studied thoroughly. The present paper demonstrates that these typical error measures often are not good predictors of cost consequences in material requirements planning (MRP) settings. MRP systems rely directly on the master production schedule (MPS) to specify gross requirements. These MRP environments receive forecast errors indirectly when the errors create inaccuracies in the MPS. Our study results suggest that within MRP environments the predictive capabilities of forecast-error measures are contingent on the lot-sizing rule and the product components structure When forecast errors and MRP system costs are coanalyzed, bias emerges as having reasonable predictive ability. In further investigations of bias, loss functions are evaluated to explain the MRP cost consequences of forecast errors. Estimating the loss functions of forecast errors through regression analysis demonstrates the superiority of loss functions as measures over typical forecast error measures in the MPS.  相似文献   

17.
Shiga‐toxin producing Escherichia coli (STEC) strains may cause human infections ranging from simple diarrhea to Haemolytic Uremic Syndrome (HUS). The five main pathogenic serotypes of STEC (MPS‐STEC) identified thus far in Europe are O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Because STEC strains can survive or grow during cheese making, particularly in soft cheeses, a stochastic quantitative microbial risk assessment model was developed to assess the risk of HUS associated with the five MPS‐STEC in raw milk soft cheeses. A baseline scenario represents a theoretical worst‐case scenario where no intervention was considered throughout the farm‐to‐fork continuum. The risk level assessed with this baseline scenario is the risk‐based level. The impact of seven preharvest scenarios (vaccines, probiotic, milk farm sorting) on the risk‐based level was expressed in terms of risk reduction. Impact of the preharvest intervention ranges from 76% to 98% of risk reduction with highest values predicted with scenarios combining a decrease of the number of cow shedding STEC and of the STEC concentration in feces. The impact of postharvest interventions on the risk‐based level was also tested by applying five microbiological criteria (MC) at the end of ripening. The five MCs differ in terms of sample size, the number of samples that may yield a value larger than the microbiological limit, and the analysis methods. The risk reduction predicted varies from 25% to 96% by applying MCs without preharvest interventions and from 1% to 96% with combination of pre‐ and postharvest interventions.  相似文献   

18.
In this paper, the supplier of a key component to a global manufacturer offers a one‐time price discount; we study the firm's optimal response to the discount under two different strategies. In the first strategy, the firm does not pass along the discount to its customers (sales subsidiaries); the firm simply coordinates purchasing and production among the different factories to take advantage of this one‐time price discount. In the second strategy, the firm offers price discounts for its most profitable products in different sales subsidiaries to increase their demand. We carried out experiments for the two strategies based on a mathematical programming model, built around Toshiba's global notebook supply chain. Model constraints include, among others, material constraints, bill‐of‐materials, capacity and transportation constraints, minimum lot size constraints, and a constraint on minimum fill rate (service level constraint). Unlike most models of this type in the literature, which define variables in terms of single arc flows, we employ path variables, which allow for direct identification and manipulation of profitable and non‐profitable products.  相似文献   

19.
Goldratt, the originator of the Theory of Constraints (TOC), maintains that only the system's primary resource constraint(s) should be scheduled at 100% of capacity. All other resources should have excess capacity. This paper presents the results of a simulation experiment that studies how changes in the capacity utilization of a systems two most heavily utilized resources affect the performance of a drum‐buffer‐rope (DBR)scheduling system. The research demonstrates that 100% utilization of the primary constraint is not optimal. It also shows that DBR responds well to relatively low levels of increased capacity at the operations second most heavily utilized resource. This research also highlights several other issues related to capacity utilization that need further investigation.  相似文献   

20.
Basic characteristics of an assemble-to-order environment make effective master scheduling extremely difficult. Limited resource capacities and dynamic customer end-item demand contribute to the complexity of the master production scheduling problem. To gain flexibility and responsiveness within this system, the master production schedule (MPS) focuses at the component level. This research proposes a master scheduling technique for manufactured components which combines a multiobjective capacitated multi-item/multi-stage lot-sizing model with an interactive multiple objective optimization solution procedure. To evaluate the model's performance as a realistic and practical master scheduling tool, this study focuses on the National Cash Register (NCR) electronics manufacturing facility in Columbia, South Carolina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号