首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the effects of non-normality and autocorrelation on the performances of various individuals control charts for monitoring the process mean and/or variance. The traditional Shewhart X chart and moving range (MR) chart are investigated as well as several types of exponentially weighted moving average (EWMA) charts and combinations of control charts involving these EWMA charts. It is shown that the combination of the X and MR charts will not detect small and moderate parameter shifts as fast as combinations involving the EWMA charts, and that the performana of the X and MR charts is very sensitive to the normality assumption. It is also shown that certain combinations of EWMA charts can be designed to be robust to non-normality and very effective at detecting small and moderate shifts in the process mean and/or variance. Although autocorrelation can have a significant effect on the in-control performances of these combinations of EWMA charts, their relative out-of-control performances under independence are generally maintained for low to moderate levels of autocorrelation.  相似文献   

2.
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage.  相似文献   

3.
ABSTRACT

The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme.  相似文献   

4.
The exponentially weighted moving average (EWMA) control chart is efficient in detecting small changes in process parameters but less efficient when the changes are relatively large, due to what is known as the inertia problem. To diminish the inertia, an adaptive EWMA (AEWMA) chart has been proposed for monitoring process locations to improve over the traditional EWMA charts. The basic idea of the AEWMA scheme is to dynamically weight the past observations according to a suitable function of the current prediction error. This article extends the idea of the AEWMA chart for monitoring process locations to the case of monitoring process dispersion. A Markov chain model is established to analyze and design the suggested chart. It is shown that the AEWMA dispersion chart performs better than the EWMA and other dispersion charts in terms of its ability to perform relatively well at both small and large changes in process dispersion.  相似文献   

5.
Recently statistical process control (SPC) methodologies have been developed to accommodate autocorrelated data. A primary method to deal with autocorrelated data is the use of residual charts. Although this methodology has the advantage that it can be applied to any autocorrelated data it needs time series modeling efforts. In addition for a X residual chart the detection capability is sometimes small compared to the X chart and EWMA chart. Zhang (1998) proposed the EWMAST chart which is constructed by charting the EWMA statistic for stationary processes to monitor the process mean. The performance of the EWMAST chart the X chart the X residual chart and other charts were compared in Zhang (1998). In this paper comparisons are made among the EWMAST chart the CUSUM residual chart and EWMA residual chart as well as the X residual chart and X chart via the average run length.  相似文献   

6.
The exponentially weighted moving average (EWMA) control charts are widely used in chemical and process industries because of their excellent speed in catching small to moderate shifts in the process target. In usual practice, many data come from a process where the monitoring statistic is non-normally distributed or it follows an unknown probability distribution. This necessitates the use of distribution-free/nonparametric control charts for monitoring the deviations from the process target. In this paper, we integrate the existing EWMA sign chart with the conforming run length chart to propose a new synthetic EWMA (SynEWMA) sign chart for monitoring the process mean. The SynEWMA sign chart encompasses the synthetic sign and EWMA sign charts. Monte Carlo simulations are used to compute the run length profiles of the SynEWMA sign chart. Based on a comprehensive comparison, it turns out that the SynEWMA sign chart is able to perform substantially better than the existing EWMA sign chart. Both real and simulated data sets are used to explain the working and implementation of existing and proposed control charts.  相似文献   

7.
The exponentially weighted moving average (EWMA) control charts with variable sampling intervals (VSIs) have been shown to be substantially quicker than the fixed sampling intervals (FSI) EWMA control charts in detecting process mean shifts. The usual assumption for designing a control chart is that the data or measurements are normally distributed. However, this assumption may not be true for some processes. In the present paper, the performances of the EWMA and combined –EWMA control charts with VSIs are evaluated under non-normality. It is shown that adding the VSI feature to the EWMA control charts results in very substantial decreases in the expected time to detect shifts in process mean under both normality and non-normality. However, the combined –EWMA chart has its false alarm rate and its detection ability is affected if the process data are not normally distributed.  相似文献   

8.
Shewhart and EWMA control charts can be suitably combined to obtain a simple monitoring scheme sensitive to both large and small shifts in the process mean. So far, the performance of the combined Shewhart–EWMA (CSEWMA) has been investigated under the assumption that the process parameters are known. However, parameters are often estimated from reference Phase I samples. Since chart performances may be even largely affected by estimation errors, we study the behaviour of the CSEWMA with estimated parameters in both in- and out-of-control situations. Comparisons with standard Shewhart and EWMA charts are presented. Recommendations are given for Phase I sample size requirements necessary to achieve desired in-control performance.  相似文献   

9.
The traditional design procedure for selecting the parameters of EWMA charts is based on the average run length (ARL). It is shown that for some types of EWMA charts, such a procedure may lead to high probability of a false out-of-control signal. An alternative procedure based on both the ARL and the standard deviation of run length (SRL) is recommended. It is shown that, with the new procedure, the EWMA chart using its exact variance can detect moderate and large shifts of the process mean faster.  相似文献   

10.
The performance of the cumulative sum (CUSUM) control chart for the mean when measurement error exists is investigated. It is shown that the CUSUM chart is greatly affected by the measurement error. A similar result holds for the case of the CUSUM chart for the mean with linearly increasing variance. In this paper, we consider multiple measurements to reduce the effect of measurement error on the charts performance. Finally, a comparison of the CUSUM and EWMA charts is presented and certain recommendations are given.  相似文献   

11.
Control chart is an important statistical technique that is used to monitor the quality of a process. Shewhart control charts are used to detect larger disturbances in the process parameters, whereas cumulative sum (CUSUM) and exponential weighted moving average (EWMA) are meant for smaller and moderate changes. In this study, we enhanced mixed EWMA–CUSUM control charts with varying fast initial response (FIR) features and also with a runs rule of two out of three successive points that fall above the upper control limit. We investigate their run-length properties. The proposed control charting schemes are compared with the existing counterparts including classical CUSUM, classical EWMA, FIR CUSUM, FIR EWMA, mixed EWMA–CUSUM, 2/3 modified EWMA, and 2/3 CUSUM control charting schemes. A case study is presented for practical considerations using a real data set.  相似文献   

12.
ABSTRACT

This article develops an exponentially weighted moving average (EWMA) control chart using an auxiliary variable and repetitive sampling for efficient detection of small to moderate shifts in location. A EWMA statistic of a product estimator of the average (which utilities the information of auxiliary variables as well as repetitive sampling) is plotted on the proposed chart. The control chart coefficients of the proposed EWMA chart are determined for two strategic limits known as outer and inner control limits for the target in-control average run length. The performance of the proposed EWMA chart is studied using average run length when a shift occurs in the process average. The efficiency of the developed chart is compared with the competitive existing control charts. The results of the study revealed that proposed EWMA chart is more efficient than others to detect small changes in process mean.  相似文献   

13.
Control chart is the most important statistical process control tool used to monitor changes in process location and dispersion. In this study, an EWMA control chart is proposed for efficient and robust monitoring of process dispersion. The proposed chart, namely the MDEWMA chart, is based on estimating the process standard deviation (σ) using the mean absolute deviations (MD), taken from the sample median. The performance of the proposed chart has been compared with the EWMASR chart (a dispersion EWMA chart based on sample range) and MD chart (a Shewhart-type dispersion chart based on MD), under the existence and violation of normality assumption. It has been observed that the proposed MDEWMA chart is more efficient and robust when compared with both EWMASR and MD charts in terms of run length (RL) characteristics such as average RL, median RL and standard deviation of the RL distribution.  相似文献   

14.
Abstract

In this article, a new non parametric control chart based on the modified or controlled exponentially weighted moving average (EWMA) statistic is developed to monitor the process deviation from the target value. The proposed control chart is evaluated for different values of design parameters using the average run length as a performance criterion under various sample sizes. The proposed chart is compared with the existing non parametric EWMA sign control chart. It is observed that the proposed chart is better than the existing EWMA sign control chart in terms of run length characteristics. An empirical example is provided for the practical implementation of the proposed chart.  相似文献   

15.
The adaptive memory-type control charts, including the adaptive exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, have gained considerable attention because of their excellent speed in providing overall good detection over a range of mean shift sizes. In this paper, we propose a new adaptive EWMA (AEWMA) chart using the auxiliary information for efficiently monitoring the infrequent changes in the process mean. The idea is to first estimate the unknown process mean shift using an auxiliary information based mean estimator, and then adaptively update the smoothing constant of the EWMA chart. Using extensive Monte Carlo simulations, the run length profiles of the AEWMA chart are computed and explored. The AEWMA chart is compared with the existing control charts, including the classical EWMA, CUSUM, synthetic EWMA and synthetic CUSUM charts, in terms of the run length characteristics. It turns out that the AEWMA chart performs uniformly better than these control charts when detecting a range of mean shift sizes. An illustrative example is also presented to demonstrate the working and implementation of the proposed and existing control charts.  相似文献   

16.
Originally, the exponentially weighted moving average (EWMA) control chart was developed for detecting changes in the process mean. The average run length (ARL) became the most popular performance measure for schemes with this objective. When monitoring the mean of independent and normally distributed observations the ARL can be determined with high precision. Nowadays, EWMA control charts are also used for monitoring the variance. Charts based on the sample variance S2 are an appropriate choice. The usage of ARL evaluation techniques known from mean monitoring charts, however, is difficult. The most accurate method—solving a Fredholm integral equation with the Nyström method—fails due to an improper kernel in the case of chi-squared distributions. Here, we exploit the collocation method and the product Nyström method. These methods are compared to Markov chain based approaches. We see that collocation leads to higher accuracy than currently established methods.  相似文献   

17.
The memory-type adaptive and non-adaptive control charts are among the best control charts for detecting small-to-moderate changes in the process parameter(s). In this paper, we propose the Crosier CUSUM (CCUSUM), EWMA, adaptive CCUSUM (ACCUSUM) and adaptive EWMA (AEWMA) charts for efficiently monitoring the changes in the covariance matrix of a multivariate normal process without subgrouping. Using extensive Monte Carlo simulations, the length characteristics of these control charts are computed. It turns out that the ACCUSUM and AEWMA charts perform uniformly and substantially better than the CCUSUM and EWMA charts when detecting a range of shift sizes in the covariance matrix. Moreover, the AEWMA chart outperforms the ACCUSUM chart. A real dataset is used to explain the implementation of the proposed control charts.  相似文献   

18.
Adaptive control charts have been developed for improving the capability of control charts in detecting small shifts. In this article, we propose a new exponential weighted moving average control chart with variable sample size, in which the sample size is determined as an integer linear function by EWMA statistic value. The performance of the proposed VSS EWMA control chart is compared with FSS EWMA as well as traditional VSS EWMA control charts. The results show the better performance of the proposed VSS strategy respect to the traditional one and fixed sample size.  相似文献   

19.
The sequential probability ratio test (SPRT) chart is a very effective tool for monitoring manufacturing processes. This paper proposes a rational SPRT chart to monitor both process mean and variance. This SPRT chart determines the sampling interval d based on the rational subgroup concept according to the process conditions and administrative considerations. Since the rational subgrouping is widely adopted in the design and implementation of control charts, the studies of the rational SPRT have a practical significance. The rational SPRT chart is designed optimally in order to minimize the index average extra quadratic loss for the best overall performance. A systematic performance study has also been conducted. From an overall viewpoint, the rational SPRT chart is more effective than the cumulative sum chart by more than 63%. Furthermore, this article provides a design table, which contains the optimal values of the parameters of the rational SPRT charts for different specifications. This will greatly facilitate the potential users to select an appropriate SPRT chart for their applications. The users can also justify the application of the rational SPRT chart according to the achievable enhancement in detection effectiveness.  相似文献   

20.
An accurate numerical procedure is presented for computing the average run length (ARL) of an exponentially weighted moving average (EWMA) chart under a linear drift in the process mean. The performance of an EWMA chart is then evaluated under a linear drift in the mean. In processes where gradual linear drifts rather than abrupt changes in the mean model the shifts in the mean more accurately, an evaluation of the performance of an EWMA chart under a linear drift is more appropriate. Tables of optimal smoothing parameters and control chart limits are given which make the design of EWMA charts easy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号