共查询到20条相似文献,搜索用时 15 毫秒
1.
Two approximation procedures to determine required sample size for a Fixed width binomial confidence interval are given and compared to exact calculations as well as the normal and Poisson approximations. The approximation procedures are found to be quite simple but very accurate for estimating sample sizes for either rare or abundant attributes. 相似文献
2.
《Journal of Statistical Computation and Simulation》2012,82(4):696-706
Determination of an adequate sample size is critical to the design of research ventures. For clustered right-censored data, Manatunga and Chen [Sample size estimation for survival outcomes in cluster-randomized studies with small cluster sizes. Biometrics. 2000;56(2):616–621] proposed a sample size calculation based on considering the bivariate marginal distribution as Clayton copula model. In addition to the Clayton copula, other important family of copulas, such as Gumbel and Frank copulas are also well established in multivariate survival analysis. However, sample size calculation based on these assumptions has not been fully investigated yet. To broaden the scope of Manatunga and Chen [Sample size estimation for survival outcomes in cluster-randomized studies with small cluster sizes. Biometrics. 2000;56(2):616–621]'s research and achieve a more flexible sample size calculation for clustered right-censored data, we extended the work by assuming the marginal distribution as bivariate Gumbel and Frank copulas. We evaluate the performance of the proposed method and investigate the impacts of the accrual times, follow-up times and the within-clustered correlation effect of the study. The proposed method is applied to two real-world studies, and the R code is made available to users. 相似文献
3.
Steven A. Julious 《Pharmaceutical statistics》2005,4(4):287-291
When designing a clinical trial an appropriate justification for the sample size should be provided in the protocol. However, there are a number of settings when undertaking a pilot trial when there is no prior information to base a sample size on. For such pilot studies the recommendation is a sample size of 12 per group. The justifications for this sample size are based on rationale about feasibility; precision about the mean and variance; and regulatory considerations. The context of the justifications are that future studies will use the information from the pilot in their design. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
Jason J. Z. Liao 《Pharmaceutical statistics》2010,9(2):125-132
It is often necessary to compare two measurement methods in medicine and other experimental sciences. This problem covers a broad range of data. Many authors have explored ways of assessing the agreement of two sets of measurements. However, there has been relatively little attention to the problem of determining sample size for designing an agreement study. In this paper, a method using the interval approach for concordance is proposed to calculate sample size in conducting an agreement study. The philosophy behind this is that the concordance is satisfied when no more than the pre‐specified k discordances are found for a reasonable large sample size n since it is much easier to define a discordance pair. The goal here is to find such a reasonable large sample size n. The sample size calculation is based on two rates: the discordance rate and tolerance probability, which in turn can be used to quantify an agreement study. The proposed approach is demonstrated through a real data set. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
With the increasing globalization of drug development, the multiregional clinical trial (MRCT) has gained extensive use. The data from MRCTs could be accepted by regulatory authorities across regions and countries as the primary sources of evidence to support global marketing drug approval simultaneously. The MRCT can speed up patient enrollment and drug approval, and it makes the effective therapies available to patients all over the world simultaneously. However, there are many challenges both operationally and scientifically in conducting a drug development globally. One of many important questions to answer for the design of a multiregional study is how to partition sample size into each individual region. In this paper, two systematic approaches are proposed for the sample size allocation in a multiregional equivalence trial. A numerical evaluation and a biosimilar trial are used to illustrate the characteristics of the proposed approaches. 相似文献
6.
We consider the problem of sample size calculation for non-inferiority based on the hazard ratio in time-to-event trials where overall study duration is fixed and subject enrollment is staggered with variable follow-up. An adaptation of previously developed formulae for the superiority framework is presented that specifically allows for effect reversal under the non-inferiority setting, and its consequent effect on variance. Empirical performance is assessed through a small simulation study, and an example based on an ongoing trial is presented. The formulae are straightforward to program and may prove a useful tool in planning trials of this type. 相似文献
7.
Enrique González-Dávila Josep Ginebra Roberto Dorta-Guerra 《Journal of applied statistics》2008,35(4):357-367
This paper provides closed form expressions for the sample size for two-level factorial experiments when the response is the number of defectives. The sample sizes are obtained by approximating the two-sided test for no effect through tests for the mean of a normal distribution, and borrowing the classical sample size solution for that problem. The proposals are appraised relative to the exact sample sizes computed numerically, without appealing to any approximation to the binomial distribution, and the use of the sample size tables provided is illustrated through an example. 相似文献
8.
One of the most important steps in the design of a pharmaceutical clinical trial is the estimation of the sample size. For a superiority trial the sample size formula (to achieve a stated power) would be based on a given clinically meaningful difference and a value for the population variance. The formula is typically used as though this population variance is known whereas in reality it is unknown and is replaced by an estimate with its associated uncertainty. The variance estimate would be derived from an earlier similarly designed study (or an overall estimate from several previous studies) and its precision would depend on its degrees of freedom. This paper provides a solution for the calculation of sample sizes that allows for the imprecision in the estimate of the sample variance and shows how traditional formulae give sample sizes that are too small since they do not allow for this uncertainty with the deficiency being more acute with fewer degrees of freedom. It is recommended that the methodology described in this paper should be used when the sample variance has less than 200 degrees of freedom. 相似文献
9.
Sample size estimation for comparing the rates of change in two-arm repeated measurements has been investigated by many investigators. In contrast, the literature has paid relatively less attention to sample size estimation for studies with multi-arm repeated measurements where the design and data analysis can be more complex than two-arm trials. For continuous outcomes, Jung and Ahn (2004) and Zhang and Ahn (2013) have presented sample size formulas to compare the rates of change and time-averaged responses in multi-arm trials, using the generalized estimating equation (GEE) approach. To our knowledge, there has been no corresponding development for multi-arm trials with count outcomes. We present a sample size formula for comparing the rates of change in multi-arm repeated count outcomes using the GEE approach that accommodates various correlation structures, missing data patterns, and unbalanced designs. We conduct simulation studies to assess the performance of the proposed sample size formula under a wide range of designing configurations. Simulation results suggest that empirical type I error and power are maintained close to their nominal levels. The proposed method is illustrated using an epileptic clinical trial example. 相似文献
10.
讨论了应用设计效应间接计算不等概率抽群的单级整群抽样和二阶段抽样方案样本量的问题,其中包括:所论抽样方案设计效应的估计;估计所论总体的方差,并根据精度要求计算简单随机抽取基本抽样单元时所需的样本量;用设计效应将上述样本量换算成所论抽样方案需要的样本量。 相似文献
11.
Reliability sampling plans provide an efficient method to determine the acceptability of a product based upon the lifelengths of some test units. Usually, they depend on the producer and consumer’s quality requirements and do not admit closed form solutions. Acceptance sampling plans for one- and two-parameter exponential lifetime models, derived by approximating the operating characteristic curve, are presented in this paper. The accuracy of these approximate plans, which are explicitly expressible and valid for failure and progressive censoring, is assessed. The approximation proposed in the one-parameter case is found to be practically exact. Explicit lower and upper bounds on the smallest sample size are given in the two-parameter case. Some additional advantages are also pointed out. 相似文献
12.
Nicholas R. Farnum 《统计学通讯:模拟与计算》2013,42(4):1057-1065
We derive upper and lower bounds at the point at which the average outgoing quality limit (AOQL) of an attributes acceptance sampling plan is achieved. Using a simple average of these bounds to approximate the ordinate of the AOQL, we develop an accurate, closed-form approximation to the AOQL. The bounds and approximation show how the parameters of a sampling plan affect the AOQL and can be used to study the behavior of the AOQL and other measures of the plan's performance. 相似文献
13.
There are several approaches to assess or demonstrate pharmacokinetic dose proportionality. One statistical method is the traditional ANOVA model, where dose proportionality is evaluated using the bioequivalence limits. A more informative method is the mixed effects Power Model, where dose proportionality is assessed using a decision rule for the estimated slope. Here we propose analytical derivations of sample sizes for various designs (including crossover, incomplete block and parallel group designs) to be analysed according to the Power Model. 相似文献
14.
Sample size re-estimation without unblinding for normally distributed outcomes with unknown variance
Monitoring clinical trials in nonfatal diseases where ethical considerations do not dictate early termination upon demonstration of efficacy often requires examining the interim findings to assure that the protocol-specified sample size will provide sufficient power against the null hypothesis when the alternative hypothesis is true. The sample size may be increased, if necessary to assure adequate power. This paper presents a new method for carrying out such interim power evaluations for observations from normal distributions without unblinding the treatment assignments or discernably affecting the Type 1 error rate. Simulation studies confirm the expected performance of the method. 相似文献
15.
Steven G. Rhiel 《统计学通讯:模拟与计算》2013,42(4):1295-1309
The use of a range estimator of the population standard deviation, sigma (σ), for determining sample sizes is discussed in this study. Standardized mean ranges (dn's), when divided into the ranges of sampling frames, provide estimates of the standard deviation of the population. These estimates can be used for determining sample sizes. The dn's are provided for seven different distributions for sampling frame sizes that range from 2 to 2000, For each of the seven distributions, functional relationships are developed such that dn = f(nSF) where nSF is the size of the sample frame. From these functions, dn's can be estimated for sampling frame sizes which are not presented in the study. 相似文献
16.
In some exceptional circumstances, as in very rare diseases, nonrandomized one‐arm trials are the sole source of evidence to demonstrate efficacy and safety of a new treatment. The design of such studies needs a sound methodological approach in order to provide reliable information, and the determination of the appropriate sample size still represents a critical step of this planning process. As, to our knowledge, no method exists for sample size calculation in one‐arm trials with a recurrent event endpoint, we propose here a closed sample size formula. It is derived assuming a mixed Poisson process, and it is based on the asymptotic distribution of the one‐sample robust nonparametric test recently developed for the analysis of recurrent events data. The validity of this formula in managing a situation with heterogeneity of event rates, both in time and between patients, and time‐varying treatment effect was demonstrated with exhaustive simulation studies. Moreover, although the method requires the specification of a process for events generation, it seems to be robust under erroneous definition of this process, provided that the number of events at the end of the study is similar to the one assumed in the planning phase. The motivating clinical context is represented by a nonrandomized one‐arm study on gene therapy in a very rare immunodeficiency in children (ADA‐SCID), where a major endpoint is the recurrence of severe infections. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented. 相似文献
18.
Luzia Gonçalves M. Rosário de Oliveira Cláudia Pascoal Ana Pires 《Journal of applied statistics》2012,39(11):2453-2473
The poor performance of the Wald method for constructing confidence intervals (CIs) for a binomial proportion has been demonstrated in a vast literature. The related problem of sample size determination needs to be updated and comparative studies are essential to understanding the performance of alternative methods. In this paper, the sample size is obtained for the Clopper–Pearson, Bayesian (Uniform and Jeffreys priors), Wilson, Agresti–Coull, Anscombe, and Wald methods. Two two-step procedures are used: one based on the expected length (EL) of the CI and another one on its first-order approximation. In the first step, all possible solutions that satisfy the optimal criterion are obtained. In the second step, a single solution is proposed according to a new criterion (e.g. highest coverage probability (CP)). In practice, it is expected a sample size reduction, therefore, we explore the behavior of the methods admitting 30% and 50% of losses. For all the methods, the ELs are inflated, as expected, but the coverage probabilities remain close to the original target (with few exceptions). It is not easy to suggest a method that is optimal throughout the range (0, 1) for p. Depending on whether the goal is to achieve CP approximately or above the nominal level different recommendations are made. 相似文献
19.
For binary endpoints, the required sample size depends not only on the known values of significance level, power and clinically relevant difference but also on the overall event rate. However, the overall event rate may vary considerably between studies and, as a consequence, the assumptions made in the planning phase on this nuisance parameter are to a great extent uncertain. The internal pilot study design is an appealing strategy to deal with this problem. Here, the overall event probability is estimated during the ongoing trial based on the pooled data of both treatment groups and, if necessary, the sample size is adjusted accordingly. From a regulatory viewpoint, besides preserving blindness it is required that eventual consequences for the Type I error rate should be explained. We present analytical computations of the actual Type I error rate for the internal pilot study design with binary endpoints and compare them with the actual level of the chi‐square test for the fixed sample size design. A method is given that permits control of the specified significance level for the chi‐square test under blinded sample size recalculation. Furthermore, the properties of the procedure with respect to power and expected sample size are assessed. Throughout the paper, both the situation of equal sample size per group and unequal allocation ratio are considered. The method is illustrated with application to a clinical trial in depression. Copyright © 2004 John Wiley & Sons Ltd. 相似文献
20.
May Barghout 《统计学通讯:模拟与计算》2017,46(2):910-932
Most software reliability models use the maximum likelihood method to estimate the parameters of the model. The maximum likelihood method assumes that the inter-failure time distributions contribute equally to the likelihood function. Since software reliability is expected to exhibit growth, a weighted likelihood function that gives higher weights to latter inter-failure times compared to earlier ones is suggested. The accuracy of the predictions obtained using the weighted likelihood method is compared with the predictions obtained when the parameters are estimated by the maximum likelihood method on three real datasets. A simulation study is also conducted. 相似文献