首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider model selection for linear mixed-effects models with clustered structure, where conditional Kullback–Leibler (CKL) loss is applied to measure the efficiency of the selection. We estimate the CKL loss by substituting the empirical best linear unbiased predictors (EBLUPs) into random effects with model parameters estimated by maximum likelihood. Although the BLUP approach is commonly used in predicting random effects and future observations, selecting random effects to achieve asymptotic loss efficiency concerning CKL loss is challenging and has not been well studied. In this paper, we propose addressing this difficulty using a conditional generalized information criterion (CGIC) with two tuning parameters. We further consider a challenging but practically relevant situation where the number, m $$ m $$ , of clusters does not go to infinity with the sample size. Hence the random-effects variances are not consistently estimable. We show that via a novel decomposition of the CKL risk, the CGIC achieves consistency and asymptotic loss efficiency, whether m $$ m $$ is fixed or increases to infinity with the sample size. We also conduct numerical experiments to illustrate the theoretical findings.  相似文献   

2.
We develop a framework that allows the use of the multi-level Monte Carlo (MLMC) methodology (Giles in Acta Numer. 24:259–328, 2015. https://doi.org/10.1017/S096249291500001X) to calculate expectations with respect to the invariant measure of an ergodic SDE. In that context, we study the (over-damped) Langevin equations with a strongly concave potential. We show that when appropriate contracting couplings for the numerical integrators are available, one can obtain a uniform-in-time estimate of the MLMC variance in contrast to the majority of the results in the MLMC literature. As a consequence, a root mean square error of $$\mathcal {O}(\varepsilon )$$ is achieved with $$\mathcal {O}(\varepsilon ^{-2})$$ complexity on par with Markov Chain Monte Carlo (MCMC) methods, which, however, can be computationally intensive when applied to large datasets. Finally, we present a multi-level version of the recently introduced stochastic gradient Langevin dynamics method (Welling and Teh, in: Proceedings of the 28th ICML, 2011) built for large datasets applications. We show that this is the first stochastic gradient MCMC method with complexity $$\mathcal {O}(\varepsilon ^{-2}|\log {\varepsilon }|^{3})$$, in contrast to the complexity $$\mathcal {O}(\varepsilon ^{-3})$$ of currently available methods. Numerical experiments confirm our theoretical findings.  相似文献   

3.
AStA Advances in Statistical Analysis - Auxiliary information $${\varvec{x}}$$ is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population...  相似文献   

4.
Statistics and Computing - We propose the Laplace method to derive approximate inference for Gaussian process (GP) regression in the location and scale parameters of the student- $$ {t}$$...  相似文献   

5.
Statistics and Computing - We propose an adaptive $$\ell _1$$ -penalized estimator in the framework of Generalized Linear Models with identity-link and Poisson data, by taking advantage of a...  相似文献   

6.
Statistics and Computing - We propose a novel structure selection method for high-dimensional ( $$d > 100$$ ) sparse vine copulas. Current sequential greedy approaches for structure...  相似文献   

7.
It is known that functional single-index regression models can achieve better prediction accuracy than functional linear models or fully nonparametric models, when the target is to predict a scalar response using a function-valued covariate. However, the performance of these models may be adversely affected by extremely large values or skewness in the response. In addition, they are not able to offer a full picture of the conditional distribution of the response. Motivated by using trajectories of $$\hbox {PM}_{{10}}$$ concentrations of last day to predict the maximum $$\hbox {PM}_{{10}}$$ concentration of the current day, a functional single-index quantile regression model is proposed to address those issues. A generalized profiling method is employed to estimate the model. Simulation studies are conducted to investigate the finite sample performance of the proposed estimator. We apply the proposed framework to predict the maximal value of $$\hbox {PM}_{{10}}$$ concentrations based on the intraday $$\hbox {PM}_{{10}}$$ concentrations of the previous day.  相似文献   

8.
Statistical Methods & Applications - We study a problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $$dX_t=\theta (\mu + X_t)dt+dG_t,\ t\ge 0$$ with unknown...  相似文献   

9.
10.
Let X1 X2 … XN be independent normal p-vectors with common mean vector $$ = ($$) and common nonsingular covariance matrix $$ = Diag ($sGi) [(1–p) I + pE] Diag ($sGi), $sGi> 0, i = 1… p, 1>p>=1/p–1. Write rij = sample correlation between the i th and the j th variable i j = 1,… p. It has been proved that for testing the hypothesis H0 : p = 0 against the alternative H1 : p>0 where $$ and $sG1,…, $sGp are unknown, the test which rejects H0 for large value of $$ rij is locally best invariant for every $aL: 0 > $aL > 1 and locally minimax as p $$ 0 in the sense of Giri and Kiefer, 1964, for every $aL: 0 > $aL $$ $aL0 > 1 where$aL0 = Pp=0 $$.  相似文献   

11.
Computation of normalizing constants is a fundamental mathematical problem in various disciplines, particularly in Bayesian model selection problems. A sampling-based technique known as bridge sampling (Meng and Wong in Stat Sin 6(4):831–860, 1996) has been found to produce accurate estimates of normalizing constants and is shown to possess good asymptotic properties. For small to moderate sample sizes (as in situations with limited computational resources), we demonstrate that the (optimal) bridge sampler produces biased estimates. Specifically, when one density (we denote as $$p_2$$) is constructed to be close to the target density (we denote as $$p_1$$) using method of moments, our simulation-based results indicate that the correlation-induced bias through the moment-matching procedure is non-negligible. More crucially, the bias amplifies as the dimensionality of the problem increases. Thus, a series of theoretical as well as empirical investigations is carried out to identify the nature and origin of the bias. We then examine the effect of sample size allocation on the accuracy of bridge sampling estimates and discovered that one possibility of reducing both the bias and standard error with a small increase in computational effort is by drawing extra samples from the moment-matched density $$p_2$$ (which we assume easy to sample from), provided that the evaluation of $$p_1$$ is not too expensive. We proceed to show how the simple adaptive approach we termed “splitting” manages to alleviate the correlation-induced bias at the expense of a higher standard error, irrespective of the dimensionality involved. We also slightly modified the strategy suggested by Wang et al. (Warp bridge sampling: the next generation, Preprint, 2019. arXiv:1609.07690) to address the issue of the increase in standard error due to splitting, which is later generalized to further improve the efficiency. We conclude the paper by offering our insights of the application of a combination of these adaptive methods to improve the accuracy of bridge sampling estimates in Bayesian applications (where posterior samples are typically expensive to generate) based on the preceding investigations, with an application to a practical example.  相似文献   

12.
Essential graphs and largest chain graphs are well-established graphical representations of equivalence classes of directed acyclic graphs and chain graphs respectively, especially useful in the context of model selection. Recently, the notion of a labelled block ordering of vertices was introduced as a flexible tool for specifying subfamilies of chain graphs. In particular, both the family of directed acyclic graphs and the family of “unconstrained” chain graphs can be specified in this way, for the appropriate choice of . The family of chain graphs identified by a labelled block ordering of vertices is partitioned into equivalence classes each represented by means of a -essential graph. In this paper, we introduce a topological ordering of meta-arrows and use this concept to devise an efficient procedure for the construction of -essential graphs. In this way we also provide an efficient procedure for the construction of both largest chain graphs and essential graphs. The key feature of the proposed procedure is that every meta-arrow needs to be processed only once.  相似文献   

13.
14.
We review limit theory and inequalities for the Kaplan–Meier Kaplan and Meier (J Am Stat Assoc 53:457–481, 1958) product limit estimator of a survival function on the whole line . Along the way we provide bounds for the constant in an interesting inequality due to Biotouzé et al. (Ann Inst H Poincaré Probab Stat 35:735–763, 1999), and provide some numerical evidence in support of one of their conjectures. Supported in part by NSF grant DMS-0503822 and by NI-AID grant 2R01 AI291968-04.  相似文献   

15.
Statistical Methods & Applications - Let $$L$$ be a linear space of real random variables on the measurable space $$(\varOmega ,\mathcal {A})$$ . Conditions for the existence of a probability...  相似文献   

16.
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. The existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor $$\mathbf {X}$$. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on $$\mathbf {X}$$ through a single linear combination of the predictors, then extend to a multi-index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and real data applications. Our results suggest that this method has a good finite sample performance and often outperforms the existing methods.  相似文献   

17.
Suppose there are k 1 (k 1 ≥ 1) test treatments that we wish to compare with k 2 (k 2 ≥ 1) control treatments. Assume that the observations from the ith test treatment and the jth control treatment follow a two-parameter exponential distribution and , where θ is a common scale parameter and and are the location parameters of the ith test and the jth control treatment, respectively, i = 1, . . . ,k 1; j = 1, . . . ,k 2. In this paper, simultaneous one-sided and two-sided confidence intervals are proposed for all k 1 k 2 differences between the test treatment location and control treatment location parameters, namely , and the required critical points are provided. Discussions of multiple comparisons of all test treatments with the best control treatment and an optimal sample size allocation are given. Finally, it is shown that the critical points obtained can be used to construct simultaneous confidence intervals for Pareto distribution location parameters.  相似文献   

18.
In this paper we address the problem of protecting confidentiality in statistical tables containing sensitive information that cannot be disseminated. This is an issue of primary importance in practice. Cell Suppression is a widely-used technique for avoiding disclosure of sensitive information, which consists in suppressing all sensitive table entries along with a certain number of other entries, called complementary suppressions. Determining a pattern of complementary suppressions that minimizes the overall loss of information results into a difficult (i.e., -hard) optimization problem known as the Cell Suppression Problem. We propose here a different protection methodology consisting of replacing some table entries by appropriate intervals containing the actual value of the unpublished cells. We call this methodology Partial Cell Suppression, as opposed to the classical complete cell suppression. Partial cell suppression has the important advantage of reducing the overall information loss needed to protect the sensitive information. Also, the new method provides automatically auditing ranges for each unpublished cell, thus saving an often time-consuming task to the statistical office while increasing the information explicitly provided with the table. Moreover, we propose an efficient (i.e., polynomial-time) algorithm to find an optimal partial suppression solution. A preliminary computational comparison between partial and complete suppression methologies is reported, showing the advantages of the new approach. Finally, we address possible extensions leading to a unified complete/partial cell suppression framework.  相似文献   

19.
Lifetime Data Analysis - Consider lifetimes originating at a series of calendar times $$ t_{1} ,t_{2} , \ldots $$ . At a certain time $$ t_{0} $$ a cross-sectional sample is taken, generating a...  相似文献   

20.
New Metropolis–Hastings algorithms using directional updates are introduced in this paper. Each iteration of a directional Metropolis–Hastings algorithm consists of three steps (i) generate a line by sampling an auxiliary variable, (ii) propose a new state along the line, and (iii) accept/reject according to the Metropolis–Hastings acceptance probability. We consider two classes of directional updates. The first uses a point in n as auxiliary variable, the second an auxiliary direction vector. The proposed algorithms generalize previous directional updating schemes since we allow the distribution of the auxiliary variable to depend on properties of the target at the current state. By letting the proposal distribution along the line depend on the density of the auxiliary variable, we identify proposal mechanisms that give unit acceptance rate. When we use direction vector as auxiliary variable, we get the advantageous effect of large moves in the Markov chain and hence the autocorrelation length of the samples is small. We apply the directional Metropolis–Hastings algorithms to a Gaussian example, a mixture of Gaussian densities, and a Bayesian model for seismic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号