首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterize symmetric Lorenz curves by the relation m(x, μ2/x) = μ (where μ =E(X) and m(x, y) = E(X | x ≤ X ≤ y) is the doubly truncated mean function). We establish that the points of the r.v. which generate the symmetric points on the Lorenz curve are x and μ2/x, and that all the distribution functions defined on the same support which are generators of the symmetric Lorenz curves have the same mean. We obtain the conditions under which doubly truncated distributions generate symmetrical Lorenz curves.  相似文献   

2.
We consider an extended family of asymmetric univariate distributions generated using a symmetric density, f, and the cumulative distribution function, G, of a symmetric distribution, which depends on two real-valued parameters λ and β and is such that when β = 0 it includes the entire class of distributions with densities of the form g(z | λ) = 2 Gz) f(z). A key element in the construction of random variables distributed according to the family is that they can be represented stochastically as the product of two random variables. From this representation we can readily derive theoretical properties, easy-to-implement simulation schemes, as well as extensions to the multivariate case and an explicit procedure for obtaining the moments. We give special attention to the extended skew-exponential power distribution. We derive its information matrix in order to obtain the asymptotic covariance matrix of the maximum likelihood estimators. Finally, an application to a real data set is reported, which shows that the extended skew-exponential power model can provide a better fit than the skew-exponential power distribution.  相似文献   

3.
The median absolute deviation (MAD) is known to be the M-estimator of scale with minimum gross errors sensitivity (GES) when the error distribution is known to be symmetric and strongly unimodal. The problem considered here is to find the Fisher consistent M-estimator with minimum GES when the error distribution is symmetric but not necessarily unimodal. Under some general conditions, the score function χ corresponding to the minimizing M-estimator has the form χ(x) = ?1 when |x| < a; χ(x) = c when a < |x| < b; χ(x) = 1 when |x| > b. An example is given in which the M-estimator with minimum GES does not correspond to the MAD.  相似文献   

4.
Let {S n : n ≥ 0} be a random walk with light-tailed increments and negative drift, and let τ(x) be the first time when the random walk crosses a given level x ≥ 0. Tang (2007 Tang , Q. ( 2007 ). The overshoot of a random walk with negative drift . Statist. Probab. Lett. 77 : 158165 .[Crossref], [Web of Science ®] [Google Scholar]) obtained the asymptotics of P(S τ(x) ? x > y, τ(x) < ∞) as x → ∞, which is uniform for y ≥ f(x) for any positive function f(x) → ∞ as x → ∞. In this article, the uniform asymptotics of P(S τ(x) ? x > y, τ(x) < ∞) as x → ∞, for 0 ≤ y ≤ N for any positive number N will be given. Using the above two results, the uniform asymptotics of P(S τ(x) ? x > y, τ(x) < ∞) as x → ∞, for y ≥ 0, is presented.  相似文献   

5.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

6.
Recently, the concept of reversed mean residual life order based on the mean of the random variable X t  = (t ? X | X ≤ t), t > 0, called the reversed residual life, defined for the nonnegative random variable X, has been introduced in the literature. In this paper, a stochastic order based on the shifted version of the reversed mean residual life is proposed, based on the reversed mean residual life function for a random variable X with support (l X , ∞), where l X may be negative infinity, and its properties are studied. Closure under the Poisson shock model and properties for spare allocation are also discussed.  相似文献   

7.
Let H(x, y) be a continuous bivariate distribution function with known marginal distribution functions F(x) and G(y). Suppose the values of H are given at several points, H(x i , y i ) = θ i , i = 1, 2,…, n. We first discuss conditions for the existence of a distribution satisfying these conditions, and present a procedure for checking if such a distribution exists. We then consider finding lower and upper bounds for such distributions. These bounds may be used to establish bounds on the values of Spearman's ρ and Kendall's τ. For n = 2, we present necessary and sufficient conditions for existence of such a distribution function and derive best-possible upper and lower bounds for H(x, y). As shown by a counter-example, these bounds need not be proper distribution functions, and we find conditions for these bounds to be (proper) distribution functions. We also present some results for the general case, where the values of H(x, y) are known at more than two points. In view of the simplification in notation, our results are presented in terms of copulas, but they may easily be expressed in terms of distribution functions.  相似文献   

8.
9.
Let Y be an observable random vector and Z be an unobserved random variable with joint density f(y, z | θ), where θ is an unknown parameter vector. Considering the problem of predicting Z based on Y, we derive Kshirsagar type lower bounds for the mean squared error of any predictor of Z. These bounds do not require the regularity conditions of Bhattacharyya bounds and hence are more widely applicable. Moreover, the new bounds are shown to be sharper than the corresponding Bhattacharyya bounds. The conditions for attaining the new lower bounds are useful for easy derivation of best unbiased predictors, which we illustrate with some examples.  相似文献   

10.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

11.
Given a copula C, we examine under which conditions on an order isomorphism ψ of [0, 1] the distortion C ψ: [0, 1]2 → [0, 1], C ψ(x, y) = ψ{C?1(x), ψ?1(y)]} is again a copula. In particular, when the copula C is totally positive of order 2, we give a sufficient condition on ψ that ensures that any distortion of C by means of ψ is again a copula. The presented results allow us to introduce in a more flexible way families of copulas exhibiting different behavior in the tails.  相似文献   

12.
Let T be a random variable having an absolutely continuous distribution function. It is known that linearity of E(T | T > t) can be used to characterize distributions such as exponential, power and Pareto distribution. In this work, we will extend the above results. More precisely, we characterize the distribution of T by using certain relationships of conditional moments of T. Our results can also be used to obtain new characterization of distributions based on adjacent order statistics or record values.  相似文献   

13.
Consider observations (representing lifelengths) taken on a random field indexed by lattice points. Estimating the distribution function F(x) = P(X i  ≤ x) is an important problem in survival analysis. We propose to estimate F(x) by kernel estimators, which take into account the smoothness of the distribution function. Under some general mixing conditions, our estimators are shown to be asymptotically unbiased and consistent. In addition, the proposed estimator is shown to be strongly consistent and sharp rates of convergence are obtained.  相似文献   

14.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

15.
ABSTRACT

Though the Pareto distribution is important to actuaries and economists, an exact expression for the distribution of the sum of n i.i.d. Pareto variates has been difficult to obtain in general. This article considers Pareto random variables with common probability density function (pdf) f(x) = (α/β) (1 + x/β)α+1 for x > 0, where α = 1,2,… and β > 0 is a scale parameter. To date, explicit expressions are known only for a few special cases: (i) α = 1 and n = 1,2,3; (ii) 0 < α < 1 and n = 1,2,…; and (iii) 1 < α < 2 and n = 1,2,…. New expressions are provided for the more general case where β > 0, and α and n are positive integers. Laplace transforms and generalized exponential integrals are used to derive these expressions, which involve integrals of real valued functions on the positive real line. An important attribute of these expressions is that the integrands involved are non oscillating.  相似文献   

16.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

17.
The lognormal and Weibull distributions are the most popular distributions for modeling lifetime data. In practical applications, they usually fit the data at hand well. However, their predictions may lead to large differences. The main purpose of the present article is to investigate the impacts of mis-specification between the lognormal and Weibull distributions on the interval estimation of a pth quantile of the distributions for complete data. The coverage probabilities of the confidence intervals (CIs) with mis-specification are evaluated. The results indicate that for both the lognormal and the Weibull distributions, the coverage probabilities are significantly influenced by mis-specification, especially for a small or a large p on lower or upper tail of the distributions. In addition, based on the coverage probabilities with correct and mis-specification, a maxmin criterion is proposed to make a choice between these two distributions. The numerical results indicate that for p ≤ 0.05 and 0.6 ≤ p ≤ 0.8, Weibull distribution is suggested to evaluate CIs of a pth quantile of the distributions, while, for 0.2 ≤ p ≤ 0.5 and p = 0.99, lognormal distribution is suggested to evaluate CIs of a pth quantile of the distributions. Besides, for p = 0.9 and 0.95, lognormal distribution is suggested if the sample size is large enough, while, for p = 0.1, Weibull distribution is suggested if the sample size is large enough. Finally, a simulation study is conducted to evaluate the efficiency of the proposed method.  相似文献   

18.
19.
For each n, k ∈ ?, let Y i  = (Y i1, Y i2,…, Y ik ), 1 ≤ i ≤ n be independent random vectors in ? k with finite third moments and Y ij are independent for all j = 1, 2,…, k. In this article, we use the Stein's technique to find constants in uniform bounds for multidimensional Berry-Esseen inequality on a closed sphere, a half plane and a rectangular set.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号