首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we discuss the class of bilinear GARCH (BL-GARCH) models that are capable of capturing simultaneously two key properties of non-linear time series: volatility clustering and leverage effects. It has often been observed that the marginal distributions of such time series have heavy tails; thus we examine the BL-GARCH model in a general setting under some non-normal distributions. We investigate some probabilistic properties of this model and we conduct a Monte Carlo experiment to evaluate the small-sample performance of the maximum likelihood estimation (MLE) methodology for various models. Finally, within-sample estimation properties were studied using S&P 500 daily returns, when the features of interest manifest as volatility clustering and leverage effects. The main results suggest that the Student-t BL-GARCH seems highly appropriate to describe the S&P 500 daily returns.  相似文献   

2.
Dolby's (1976) ultrastructural model with no replications is investigated within the class of the elliptical distributions. General asymptotic results are given for the sample covariance matrix S in the presence of incidental parameters. These results are used to study the asymptotic behaviour of some estimators of the slope parameter, unifying and extending existing results in the literature. In particular, under some regularity conditions they are shown to be consistent and asymptotically normal. For the special case of the structural model, some asymptotic relative efficiencies are also reported which show that generalized least squares and the method of moment estimators can be highly inefficient under nonnormality.  相似文献   

3.
Multilevel models have been widely applied to analyze data sets which present some hierarchical structure. In this paper we propose a generalization of the normal multilevel models, named elliptical multilevel models. This proposal suggests the use of distributions in the elliptical class, thus involving all symmetric continuous distributions, including the normal distribution as a particular case. Elliptical distributions may have lighter or heavier tails than the normal ones. In the case of normal error models with the presence of outlying observations, heavy-tailed error models may be applied to accommodate such observations. In particular, we discuss some aspects of the elliptical multilevel models, such as maximum likelihood estimation and residual analysis to assess features related to the fitting and the model assumptions. Finally, two motivating examples analyzed under normal multilevel models are reanalyzed under Student-t and power exponential multilevel models. Comparisons with the normal multilevel model are performed by using residual analysis.  相似文献   

4.
The probability density function (pdf) ofsingular elliptical distributions is represented as an integralseries of singular normal distributions. Explicit formulas for the pdf and the cdf of the generalized Chi-square distribution are derived under singular elliptical assumptions extending the result of Díaz-García [(2002). Singular elliptical distribution: density and applications. Commun. Stat.—Theory Methods 31:665–681]. Applications are given of the proposed result for singular mixedmodels.  相似文献   

5.
Patriota and Lemonte [24] introduced a quite general multivariate normal regression model. This model considers that the mean vector and the covariance matrix share the same vector of parameters. In this paper we present some influence assessment for this model, such as the local influence, total local influence of an individual and generalized leverage which are discussed. Additionally, the normal curvatures for local influence studies are derived under some perturbation schemes.  相似文献   

6.
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount the variances element by element and therefore allowing a flexible and pragmatic variance modelling approach. Diagnostic tests and sequential model monitoring are discussed in some detail. The proposed estimation theory is applied to a four-dimensional time series, comprising spot prices of aluminium, copper, lead and zinc of the London metal exchange. The empirical findings suggest that the proposed Bayesian procedure can be effectively applied to financial data, overcoming many of the disadvantages of existing volatility models.  相似文献   

7.
For longitudinal time series data, linear mixed models that contain both random effects across individuals and first-order autoregressive errors within individuals may be appropriate. Some statistical diagnostics based on the models under a proposed elliptical error structure are developed in this work. It is well known that the class of elliptical distributions offers a more flexible framework for modelling since it contains both light- and heavy-tailed distributions. Iterative procedures for the maximum-likelihood estimates of the model parameters are presented. Score tests for the presence of autocorrelation and the homogeneity of autocorrelation coefficients among individuals are constructed. The properties of test statistics are investigated through Monte Carlo simulations. The local influence method for the models is also given. The analysed results of a real data set illustrate the values of the models and diagnostic statistics.  相似文献   

8.
It is well known that moment matrices play a very important rôle in econometrics and statistics. Liu and Heyde (Stat Pap 49:455–469, 2008) give exact expressions for two-moment matrices, including the Hessian for ARCH models under elliptical distributions. In this paper, we extend the theory by establishing two additional moment matrices for conditional heteroskedastic models under elliptical distributions. The moment matrices established in this paper implement the maximum likelihood estimation by some estimation algorithms like the scoring method. We illustrate the applicability of the additional moment matrices established in this paper by applying them to establish an AR-ARCH model under an elliptical distribution.  相似文献   

9.
In this paper, we study the statistical inference based on the Bayesian approach for regression models with the assumption that independent additive errors follow normal, Student-t, slash, contaminated normal, Laplace or symmetric hyperbolic distribution, where both location and dispersion parameters of the response variable distribution include nonparametric additive components approximated by B-splines. This class of models provides a rich set of symmetric distributions for the model error. Some of these distributions have heavier or lighter tails than the normal as well as different levels of kurtosis. In order to draw samples of the posterior distribution of the interest parameters, we propose an efficient Markov Chain Monte Carlo (MCMC) algorithm, which combines Gibbs sampler and Metropolis–Hastings algorithms. The performance of the proposed MCMC algorithm is assessed through simulation experiments. We apply the proposed methodology to a real data set. The proposed methodology is implemented in the R package BayesGESM using the function gesm().  相似文献   

10.
The local influence method plays an important role in regression diagnostics and sensitivity analysis. To implement it, we need the Delta matrix for the underlying scheme of perturbations, in addition to the observed information matrix under the postulated model. Galea, Paula and Bolfarine (1997) has recently given the observed information matrix and the Delta matrix for a scheme of scale perturbations and has assessed of local influence for elliptical linear regression models. In the present paper, we consider the same elliptical linear regression models. We study the schemes of scale, predictor and response perturbations, and obtain their corresponding Delta matrices, respectively. To illustrate the methodology for assessment of local influence for these schemes and the implementation of the obtained results, we give an example.  相似文献   

11.
We propose an influence diagnostic methodology for linear regression models with stochastic restrictions and errors following elliptically contoured distributions. We study how a perturbation may impact on the mixed estimation procedure of parameters in the model. Normal curvatures and slopes for assessing influence under usual schemes are derived, including perturbations of case-weight, response variable, and explanatory variable. Simulations are conducted to evaluate the performance of the proposed methodology. An example with real-world economy data is presented as an illustration.  相似文献   

12.
This paper studies the elliptical statistical affine shape theory under certain particular conditions on the evenness or oddness of the number of landmarks. In such a case, the related distributions are polynomials, and the inference is easily performed; as an example, a landmark data is studied, and the performance of the polynomial density versus the usual series density is compared.  相似文献   

13.
In this paper we discuss estimation and diagnostic procedures in elliptical multivariate regression models with equicorrelated random errors. Two procedures are proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to assess the sensitivity of the maximum likelihood estimates (MLEs). Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering appropriate elliptical distributions. The local influence approach is used to compare the sensitivity of the model estimates.  相似文献   

14.
In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome.  相似文献   

15.
16.
This paper investigates improved testing inferences under a general multivariate elliptical regression model. The model is very flexible in terms of the specification of the mean vector and the dispersion matrix, and of the choice of the error distribution. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal and Student-t distributions as special cases. We obtain Skovgaard's adjusted likelihood ratio (LR) statistics and Barndorff-Nielsen's adjusted signed LR statistics and we compare the methods through simulations. The simulations suggest that the proposed tests display superior finite sample behaviour as compared to the standard tests. Two applications are presented in order to illustrate the methods.  相似文献   

17.
We consider the Cox-Ross-Rubinstein model of option prices which is a simple binomial model and deal with its multivariate extensions. The model consists of n independent up or down movements of the (multivariate) price. We discuss the model in the view of the limiting distributions for the price as well for the extreme changes of the prices during a period T which is split up into n small price changes, which depend on n (with nh = T). Interesting is also whether the components of the prices and of the extremes are asymptotically dependent.  相似文献   

18.
We discuss in this paper the assessment of local influence in univariate elliptical linear regression models. This class includes all symmetric continuous distributions, such as normal, Student-t, Pearson VII, exponential power and logistic, among others. We derive the appropriate matrices for assessing the local influence on the parameter estimates and on predictions by considering as influence measures the likelihood displacement and a distance based on the Pearson residual. Two examples with real data are given for illustration.  相似文献   

19.
20.
This paper considers nonlinear regression models when neither the response variable nor the covariates can be directly observed, but are measured with both multiplicative and additive distortion measurement errors. We propose conditional variance and conditional mean calibration estimation methods for the unobserved variables, then a nonlinear least squares estimator is proposed. For the hypothesis testing of parameter, a restricted estimator under the null hypothesis and a test statistic are proposed. The asymptotic properties for the estimator and test statistic are established. Lastly, a residual-based empirical process test statistic marked by proper functions of the regressors is proposed for the model checking problem. We further suggest a bootstrap procedure to calculate critical values. Simulation studies demonstrate the performance of the proposed procedure and a real example is analysed to illustrate its practical usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号