首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article addresses the problem of testing whether the vectors of regression coefficients are equal for two independent normal regression models when the error variances are unknown. This problem poses severe difficulties both to the frequentist and Bayesian approaches to statistical inference. In the former approach, normal hypothesis testing theory does not apply because of the unrelated variances. In the latter, the prior distributions typically used for the parameters are improper and hence the Bayes factor-based solution cannot be used.We propose a Bayesian solution to this problem in which no subjective input is considered. We first generate “objective” proper prior distributions (intrinsic priors) for which the Bayes factor and model posterior probabilities are well defined. The posterior probability of each model is used as a model selection tool. This consistent procedure of testing hypotheses is compared with some of the frequentist approximate tests proposed in the literature.  相似文献   

2.
The lognormal distribution is currently used extensively to describe the distribution of positive random variables. This is especially the case with data pertaining to occupational health and other biological data. One particular application of the data is statistical inference with regards to the mean of the data. Other authors, namely Zou et al. (2009), have proposed procedures involving the so-called “method of variance estimates recovery” (MOVER), while an alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoorthy and Mathew (2003). In this paper we compare the performance of the MOVER-based confidence interval estimates and the generalized confidence interval procedure to coverage of credibility intervals obtained using Bayesian methodology using a variety of different prior distributions to estimate the appropriateness of each. An extensive simulation study is conducted to evaluate the coverage accuracy and interval width of the proposed methods. For the Bayesian approach both the equal-tail and highest posterior density (HPD) credibility intervals are presented. Various prior distributions (Independence Jeffreys' prior, Jeffreys'-Rule prior, namely, the square root of the determinant of the Fisher Information matrix, reference and probability-matching priors) are evaluated and compared to determine which give the best coverage with the most efficient interval width. The simulation studies show that the constructed Bayesian confidence intervals have satisfying coverage probabilities and in some cases outperform the MOVER and generalized confidence interval results. The Bayesian inference procedures (hypothesis tests and confidence intervals) are also extended to the difference between two lognormal means as well as to the case of zero-valued observations and confidence intervals for the lognormal variance. In the last section of this paper the bivariate lognormal distribution is discussed and Bayesian confidence intervals are obtained for the difference between two correlated lognormal means as well as for the ratio of lognormal variances, using nine different priors.  相似文献   

3.
We consider the fitting of a Bayesian model to grouped data in which observations are assumed normally distributed around group means that are themselves normally distributed, and consider several alternatives for accommodating the possibility of heteroscedasticity within the data. We consider the case where the underlying distribution of the variances is unknown, and investigate several candidate prior distributions for those variances. In each case, the parameters of the candidate priors (the hyperparameters) are themselves given uninformative priors (hyperpriors). The most mathematically convenient model for the group variances is to assign them inverse gamma distributed priors, the inverse gamma distribution being the conjugate prior distribution for the unknown variance of a normal population. We demonstrate that for a wide class of underlying distributions of the group variances, a model that assigns the variances an inverse gamma-distributed prior displays favorable goodness-of-fit properties relative to other candidate priors, and hence may be used as standard for modeling such data. This allows us to take advantage of the elegant mathematical property of prior conjugacy in a wide variety of contexts without compromising model fitness. We test our findings on nine real world publicly available datasets from different domains, and on a wide range of artificially generated datasets.  相似文献   

4.
For small area estimation of area‐level data, the Fay–Herriot model is extensively used as a model‐based method. In the Fay–Herriot model, it is conventionally assumed that the sampling variances are known, whereas estimators of sampling variances are used in practice. Thus, the settings of knowing sampling variances are unrealistic, and several methods are proposed to overcome this problem. In this paper, we assume the situation where the direct estimators of the sampling variances are available as well as the sample means. Using this information, we propose a Bayesian yet objective method producing shrinkage estimation of both means and variances in the Fay–Herriot model. We consider the hierarchical structure for the sampling variances, and we set uniform prior on model parameters to keep objectivity of the proposed model. For validity of the posterior inference, we show under mild conditions that the posterior distribution is proper and has finite variances. We investigate the numerical performance through simulation and empirical studies.  相似文献   

5.
Although bootstrapping has become widely used in statistical analysis, there has been little reported concerning bootstrapped Bayesian analyses, especially when there is proper prior informa-tion concerning the parameter of interest. In this paper, we first propose an operationally implementable definition of a Bayesian bootstrap. Thereafter, in simulated studies of the estimation of means and variances, this Bayesian bootstrap is compared to various parametric procedures. It turns out that little information is lost in using the Bayesian bootstrap even when the sampling distribution is known. On the other hand, the parametric procedures are at times very sensitive to incorrectly specified sampling distributions, implying that the Bayesian bootstrap is a very robust procedure for determining the posterior distribution of the parameter.  相似文献   

6.
In this paper, we develop a matching prior for the product of means in several normal distributions with unrestricted means and unknown variances. For this problem, properly assigning priors for the product of normal means has been issued because of the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. We developed the first order probability matching priors for this problem; however, the developed matching priors are unproper. Thus, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that the derived matching prior performs better than the uniform prior and Jeffreys’ prior in meeting the target coverage probabilities, and meets well the target coverage probabilities even for the small sample sizes. In addition, to evaluate the validity of the proposed matching prior, Bayesian credible interval for the product of normal means using the matching prior is compared to Bayesian credible intervals using the uniform prior and Jeffrey’s prior, and the confidence interval using the method of Yfantis and Flatman.  相似文献   

7.
Cook (1986) presented the idea of local influence to study the sensitivity of inferences to model assumptions:introduce a vector δ of perturbations to the model; choose a discrepancy function D to measure differences between the original inference and the inference under the perturbed model; study the behavior of D near δ = 0, the original model, usually by taking derivatives. Johnson and Geisser (1983) measure influence in Bayesian inference by the Kullback-Leibler divergence between predictive distributions. I~IcCulloch (1989) is a synthesis of Cook and Johnson and Geisser, using Kullback-Leibler divergence between posterior or predictive distributions as the discrepancy function in Bayesian local influence analyses. We analyze a special case for which McCulloch gives the general theory; namely, the linear model with conjugate prior. We present specific formulae for local influence measures for 1) changes in the parameters of the gamma prior for the precision, 2) changes in the mean of the normal prior for the regression coefficients, 3) changes in the covariance matrix of the normal prior for the regression coefficients and 4) changes in the case weights. Our method is an easy way to find locally influential subsets of points without knowing in advance the sizes of the subsets. The techniques are illustrated with a regression example.  相似文献   

8.
Hierarchical models provide a useful framework for the complexities encountered in policy-relevant research in which the impact of social programs is being assessed. Such complexities include multi-site data, censored data and over-dispersion. In this paper, Bayesian inference through Markov Chain Monte Carlo methods is used for the analysis of a complex hierarchical log-normal model that shows the impact of a managed care strategy aimed at limiting length of hospital stays. Parameters in this model allow for variability in baseline length-of-stay as well as the program effect across hospitals. The authors demonstrate elicitation and sensitivity analysis with respect to prior distributions. All calculations for the posterior and predictive distributions were obtained using the software BUGS.  相似文献   

9.
We present a Bayesian analysis of variance component models via simulation. In particular, we study the 2-component hierarchical design model under balanced and unbalanced experiments. Also, we consider 2-factor additive random effect models and mixed models in a cross-classified design. We assess the sensitivity of inference to the choice of prior by a sampling/resampling technique. Finally, attention is given to non-normal error distributions such as the heavy-tailed t distribution.  相似文献   

10.
Just as frequentist hypothesis tests have been developed to check model assumptions, prior predictive p-values and other Bayesian p-values check prior distributions as well as other model assumptions. These model checks not only suffer from the usual threshold dependence of p-values, but also from the suppression of model uncertainty in subsequent inference. One solution is to transform Bayesian and frequentist p-values for model assessment into a fiducial distribution across the models. Averaging the Bayesian or frequentist posterior distributions with respect to the fiducial distribution can reproduce results from Bayesian model averaging or classical fiducial inference.  相似文献   

11.
This article reviews Bayesian inference from the perspective that the designated model is misspecified. This misspecification has implications in interpretation of objects, such as the prior distribution, which has been the cause of recent questioning of the appropriateness of Bayesian inference in this scenario. The main focus of this article is to establish the suitability of applying the Bayes update to a misspecified model, and relies on representation theorems for sequences of symmetric distributions; the identification of parameter values of interest; and the construction of sequences of distributions which act as the guesses as to where the next observation is coming from. A conclusion is that a clear identification of the fundamental starting point for the Bayesian is described.  相似文献   

12.
This article is concerned with making predictive inference on the basis of a doubly censored sample from a two-parameter Rayleigh life model. We derive the predictive distributions for a single future response, the ith future response, and several future responses. We use the Bayesian approach in conjunction with an improper flat prior for the location parameter and an independent proper conjugate prior for the scale parameter to derive the predictive distributions. We conclude with a numerical example in which the effect of the hyperparameters on the mean and standard deviation of the predictive density is assessed.  相似文献   

13.
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators. A theme of the paper is the practicality of subjective Bayesian methods. To this end, the paper describes publicly available software for Bayesian inference, model development, and communication and provides illustrations using two simple econometric models.  相似文献   

14.
A Bayesian analysis is presented for the K-group Behrens-Fisher problem. Both exact posterior distributions and approximations were developed for both a general linear contrast of the K means and the K variances, given either proper diffuse or informative conjugate priors. The contrast of variances is a unique feature of the heterogeneous variance model that enables investigators to test specific effects of experimental manipulations on variance. Finally, important-differences were observed between the heterogeneous variance model and the homogeneous model.  相似文献   

15.
Abstract. Deterministic Bayesian inference for latent Gaussian models has recently become available using integrated nested Laplace approximations (INLA). Applying the INLA‐methodology, marginal estimates for elements of the latent field can be computed efficiently, providing relevant summary statistics like posterior means, variances and pointwise credible intervals. In this article, we extend the use of INLA to joint inference and present an algorithm to derive analytical simultaneous credible bands for subsets of the latent field. The algorithm is based on approximating the joint distribution of the subsets by multivariate Gaussian mixtures. Additionally, we present a saddlepoint approximation to compute Bayesian contour probabilities, representing the posterior support of fixed parameter vectors of interest. We perform a simulation study and apply the given methods to two real examples.  相似文献   

16.
ABSTRACT

The display of the data by means of contingency tables is used in different approaches to statistical inference, for example, to broach the test of homogeneity of independent multinomial distributions. We develop a Bayesian procedure to test simple null hypotheses versus bilateral alternatives in contingency tables. Given independent samples of two binomial distributions and taking a mixed prior distribution, we calculate the posterior probability that the proportion of successes in the first population is the same as in the second. This posterior probability is compared with the p-value of the classical method, obtaining a reconciliation between both results, classical and Bayesian. The obtained results are generalized for r × s tables.  相似文献   

17.
Network meta-analysis synthesizes several studies of multiple treatment comparisons to simultaneously provide inference for all treatments in the network. It can often strengthen inference on pairwise comparisons by borrowing evidence from other comparisons in the network. Current network meta-analysis approaches are derived from either conventional pairwise meta-analysis or hierarchical Bayesian methods. This paper introduces a new approach for network meta-analysis by combining confidence distributions (CDs). Instead of combining point estimators from individual studies in the conventional approach, the new approach combines CDs, which contain richer information than point estimators, and thus achieves greater efficiency in its inference. The proposed CD approach can efficiently integrate all studies in the network and provide inference for all treatments, even when individual studies contain only comparisons of subsets of the treatments. Through numerical studies with real and simulated data sets, the proposed approach is shown to outperform or at least equal the traditional pairwise meta-analysis and a commonly used Bayesian hierarchical model. Although the Bayesian approach may yield comparable results with a suitably chosen prior, it is highly sensitive to the choice of priors (especially for the between-trial covariance structure), which is often subjective. The CD approach is a general frequentist approach and is prior-free. Moreover, it can always provide a proper inference for all the treatment effects regardless of the between-trial covariance structure.  相似文献   

18.
The choice of prior distributions for the variances can be important and quite difficult in Bayesian hierarchical and variance component models. For situations where little prior information is available, a ‘nonin-formative’ type prior is usually chosen. ‘Noninformative’ priors have been discussed by many authors and used in many contexts. However, care must be taken using these prior distributions as many are improper and thus, can lead to improper posterior distributions. Additionally, in small samples, these priors can be ‘informative’. In this paper, we investigate a proper ‘vague’ prior, the uniform shrinkage prior (Strawder-man 1971; Christiansen & Morris 1997). We discuss its properties and show how posterior distributions for common hierarchical models using this prior lead to proper posterior distributions. We also illustrate the attractive frequentist properties of this prior for a normal hierarchical model including testing and estimation. To conclude, we generalize this prior to the multivariate situation of a covariance matrix.  相似文献   

19.
The authors propose methods for Bayesian inference for generalized linear models with missing covariate data. They specify a parametric distribution for the covariates that is written as a sequence of one‐dimensional conditional distributions. They propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. They examine the properties of the proposed prior and resulting posterior distributions. They also present a Bayesian criterion for comparing various models, and a calibration is derived for it. A detailed simulation is conducted and two real data sets are examined to demonstrate the methodology.  相似文献   

20.
Abstract

This article introduces a parametric robust way of comparing two population means and two population variances. With large samples the comparison of two means, under model misspecification, is lesser a problem, for, the validity of inference is protected by the central limit theorem. However, the assumption of normality is generally required, so that the inference for the ratio of two variances can be carried out by the familiar F statistic. A parametric robust approach that is insensitive to the distributional assumption will be proposed here. More specifically, it will be demonstrated that the normal likelihood function can be adjusted for asymptotically valid inferences for all underlying distributions with finite fourth moments. The normal likelihood function, on the other hand, is itself robust for the comparison of two means so that no adjustment is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号