首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cluster analysis is one of the most widely used method in statistical analyses, in which homogeneous subgroups are identified in a heterogeneous population. Due to the existence of the continuous and discrete mixed data in many applications, so far, some ordinary clustering methods such as, hierarchical methods, k-means and model-based methods have been extended for analysis of mixed data. However, in the available model-based clustering methods, by increasing the number of continuous variables, the number of parameters increases and identifying as well as fitting an appropriate model may be difficult. In this paper, to reduce the number of the parameters, for the model-based clustering mixed data of continuous (normal) and nominal data, a set of parsimonious models is introduced. Models in this set are extended, using the general location model approach, for modeling distribution of mixed variables and applying factor analyzer structure for covariance matrices. The ECM algorithm is used for estimating the parameters of these models. In order to show the performance of the proposed models for clustering, results from some simulation studies and analyzing two real data sets are presented.  相似文献   

2.
In many studies a large number of variables is measured and the identification of relevant variables influencing an outcome is an important task. For variable selection several procedures are available. However, focusing on one model only neglects that there usually exist other equally appropriate models. Bayesian or frequentist model averaging approaches have been proposed to improve the development of a predictor. With a larger number of variables (say more than ten variables) the resulting class of models can be very large. For Bayesian model averaging Occam’s window is a popular approach to reduce the model space. As this approach may not eliminate any variables, a variable screening step was proposed for a frequentist model averaging procedure. Based on the results of selected models in bootstrap samples, variables are eliminated before deriving a model averaging predictor. As a simple alternative screening procedure backward elimination can be used. Through two examples and by means of simulation we investigate some properties of the screening step. In the simulation study we consider situations with fifteen and 25 variables, respectively, of which seven have an influence on the outcome. With the screening step most of the uninfluential variables will be eliminated, but also some variables with a weak effect. Variable screening leads to more applicable models without eliminating models, which are more strongly supported by the data. Furthermore, we give recommendations for important parameters of the screening step.  相似文献   

3.
Given observations on an m × n lattice, approximate maximum likelihood estimates are derived for a family of models including direct covariance, spatial moving average, conditional autoregressive and simultaneous autoregressive models. The approach involves expressing the (approximate) covariance matrix of the observed variables in terms of a linear combination of neighbour relationship matrices, raised to a power. The structure is such that the eigenvectors of the covariance matrix are independent of the parameters of interest. This result leads to a simple Fisher scoring type algorithm for estimating the parameters. The ideas are illustrated by fitting models to some remotely sensed data.  相似文献   

4.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

5.
Latent variable models are widely used for jointly modeling of mixed data including nominal, ordinal, count and continuous data. In this paper, we consider a latent variable model for jointly modeling relationships between mixed binary, count and continuous variables with some observed covariates. We assume that, given a latent variable, mixed variables of interest are independent and count and continuous variables have Poisson distribution and normal distribution, respectively. As such data may be extracted from different subpopulations, consideration of an unobserved heterogeneity has to be taken into account. A mixture distribution is considered (for the distribution of the latent variable) which accounts the heterogeneity. The generalized EM algorithm which uses the Newton–Raphson algorithm inside the EM algorithm is used to compute the maximum likelihood estimates of parameters. The standard errors of the maximum likelihood estimates are computed by using the supplemented EM algorithm. Analysis of the primary biliary cirrhosis data is presented as an application of the proposed model.  相似文献   

6.
面板数据的自适应Lasso分位回归方法研究   总被引:1,自引:0,他引:1  
如何在对参数进行估计的同时自动选择重要解释变量,一直是面板数据分位回归模型中讨论的热点问题之一。通过构造一种含多重随机效应的贝叶斯分层分位回归模型,在假定固定效应系数先验服从一种新的条件Laplace分布的基础上,给出了模型参数估计的Gibbs抽样算法。考虑到不同重要程度的解释变量权重系数压缩程度应该不同,所构造的先验信息具有自适应性的特点,能够准确地对模型中重要解释变量进行自动选取,且设计的切片Gibbs抽样算法能够快速有效地解决模型中各个参数的后验均值估计问题。模拟结果显示,新方法在参数估计精确度和变量选择准确度上均优于现有文献的常用方法。通过对中国各地区多个宏观经济指标的面板数据进行建模分析,演示了新方法估计参数与挑选变量的能力。  相似文献   

7.
A correct detection of areas with excess of pollution relies first on accurate predictions of pollutant concentrations, a task that is usually complicated by skewed histograms and the presence of censored data. The unified skew-Gaussian (SUG) random field proposed by Zareifard and Jafari Khaledi [19] offers a more flexible class of sampling spatial models to account for skewness. In this paper, we adopt a Bayesian framework to perform prediction for the SUG model in the presence of censored data. Owing to the presence of many latent variables with strongly dependent components in the model, we encounter convergence issues when using Monte Carlo Markov Chain algorithms. To overcome this obstacle, we use a computationally efficient inverse Bayes formulas sampling procedure to obtain approximately independent samples from the posterior distribution of latent variables. Then they are applied to update parameters in a Gibbs sampler scheme. This hybrid algorithm provides effective samples, resulting in some computational advantages and precise predictions. The proposed approach is illustrated with a simulation study and applied to a spatial data set which contains right censored data.  相似文献   

8.
For many stochastic models, it is difficult to make inference about the model parameters because it is impossible to write down a tractable likelihood given the observed data. A common solution is data augmentation in a Markov chain Monte Carlo (MCMC) framework. However, there are statistical problems where this approach has proved infeasible but where simulation from the model is straightforward leading to the popularity of the approximate Bayesian computation algorithm. We introduce a forward simulation MCMC (fsMCMC) algorithm, which is primarily based upon simulation from the model. The fsMCMC algorithm formulates the simulation of the process explicitly as a data augmentation problem. By exploiting non‐centred parameterizations, an efficient MCMC updating schema for the parameters and augmented data is introduced, whilst maintaining straightforward simulation from the model. The fsMCMC algorithm is successfully applied to two distinct epidemic models including a birth–death–mutation model that has only previously been analysed using approximate Bayesian computation methods.  相似文献   

9.
A nonconcave penalized estimation method is proposed for partially linear models with longitudinal data when the number of parameters diverges with the sample size. The proposed procedure can simultaneously estimate the parameters and select the important variables. Under some regularity conditions, the rate of convergence and asymptotic normality of the resulting estimators are established. In addition, an iterative algorithm is proposed to implement the proposed estimators. To improve efficiency for regression coefficients, the estimation of the covariance function is integrated in the iterative algorithm. Simulation studies are carried out to demonstrate that the proposed method performs well, and a real data example is analysed to illustrate the proposed procedure.  相似文献   

10.
We propose a new class of state space models for longitudinal discrete response data where the observation equation is specified in an additive form involving both deterministic and random linear predictors. These models allow us to explicitly address the effects of trend, seasonal or other time-varying covariates while preserving the power of state space models in modeling serial dependence in the data. We develop a Markov chain Monte Carlo algorithm to carry out statistical inference for models with binary and binomial responses, in which we invoke de Jong and Shephard’s (Biometrika 82(2):339–350, 1995) simulation smoother to establish an efficient sampling procedure for the state variables. To quantify and control the sensitivity of posteriors on the priors of variance parameters, we add a signal-to-noise ratio type parameter in the specification of these priors. Finally, we illustrate the applicability of the proposed state space mixed models for longitudinal binomial response data in both simulation studies and data examples.  相似文献   

11.
In this article, we generalize the partially linear single-index models to the scenario with some endogenous covariates variables. It is well known that the estimators based on the existing methods are often inconsistent because of the endogeneity of covariates. To deal with the endogenous variables, we introduce some auxiliary instrumental variables. A three-stage estimation procedure is proposed for partially linear single-index instrumental variables models. The first stage is to obtain a linear projection of endogenous variables on a set of instrumental variables, the second stage is to estimate the link function by using local linear smoother for given constant parameters, and the last stage is to obtain the estimators of constant parameters based on the estimating equation. Asymptotic normality is established for the proposed estimators. Some simulation studies are undertaken to assess the finite sample performance of the proposed estimation procedure.  相似文献   

12.
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model.  相似文献   

13.
In this paper we consider the regression problem for random sets of the Boolean-model type. Regression modeling of the Boolean random sets using some explanatory variables are classified according to the type of these variables as propagation, growth or propagation-growth models. The maximum likelihood estimation of the parameters for the propagation model is explained in detail for some specific link functions using three methods. These three methods of estimation are also compared in a simulation study.  相似文献   

14.
The research described herein was motivated by a study of the relationship between the performance of students in senior high schools and at universities in China. A special linear structural equation model is established, in which some parameters are known and both the responses and the covariables are measured with errors. To explore the relationship between the true responses and latent covariables and to estimate the parameters, we suggest a non-iterative estimation approach that can account for the external dependence between the true responses and latent covariables. This approach can also deal with the collinearity problem because the use of dimension-reduction techniques can remove redundant variables. Combining further with the information that some of parameters are given, we can perform estimation for the other unknown parameters. An easily implemented algorithm is provided. A simulation is carried out to provide evidence of the performance of the approach and to compare it with existing methods. The approach is applied to the education example for illustration, and it can be readily extended to more general models.  相似文献   

15.
Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption.  相似文献   

16.
We propose data generating structures which can be represented as the nonlinear autoregressive models with single and finite mixtures of scale mixtures of skew normal innovations. This class of models covers symmetric/asymmetric and light/heavy-tailed distributions, so provide a useful generalization of the symmetrical nonlinear autoregressive models. As semiparametric and nonparametric curve estimation are the approaches for exploring the structure of a nonlinear time series data set, in this article the semiparametric estimator for estimating the nonlinear function of the model is investigated based on the conditional least square method and nonparametric kernel approach. Also, an Expectation–Maximization-type algorithm to perform the maximum likelihood (ML) inference of unknown parameters of the model is proposed. Furthermore, some strong and weak consistency of the semiparametric estimator in this class of models are presented. Finally, to illustrate the usefulness of the proposed model, some simulation studies and an application to real data set are considered.  相似文献   

17.
We consider the estimation of Poisson regression models in which structural variation in a subset of the parameters is permitted. It is noted that coventional estimation algorithms are likely to impose restrictions on the number of explanatory variables and the number of structural regimes. We propose an alternative algorithm that implements partitioned matrix inversion and thereby avoids restictions on the size of the model. The algorithm is applied to a model of shopping behavior Adjustments in the algorithm necessary for dealing with censored data are detailed.  相似文献   

18.
In this article, a general approach to latent variable models based on an underlying generalized linear model (GLM) with factor analysis observation process is introduced. We call these models Generalized Linear Factor Models (GLFM). The observations are produced from a general model framework that involves observed and latent variables that are assumed to be distributed in the exponential family. More specifically, we concentrate on situations where the observed variables are both discretely measured (e.g., binomial, Poisson) and continuously distributed (e.g., gamma). The common latent factors are assumed to be independent with a standard multivariate normal distribution. Practical details of training such models with a new local expectation-maximization (EM) algorithm, which can be considered as a generalized EM-type algorithm, are also discussed. In conjunction with an approximated version of the Fisher score algorithm (FSA), we show how to calculate maximum likelihood estimates of the model parameters, and to yield inferences about the unobservable path of the common factors. The methodology is illustrated by an extensive Monte Carlo simulation study and the results show promising performance.  相似文献   

19.
In this article, the partially linear covariate-adjusted regression models are considered, and the penalized least-squares procedure is proposed to simultaneously select variables and estimate the parametric components. The rate of convergence and the asymptotic normality of the resulting estimators are established under some regularization conditions. With the proper choices of the penalty functions and tuning parameters, it is shown that the proposed procedure can be as efficient as the oracle estimators. Some Monte Carlo simulation studies and a real data application are carried out to assess the finite sample performances for the proposed method.  相似文献   

20.
Doubly censored failure time data occur in many areas including demographical studies, epidemiology studies, medical studies and tumorigenicity experiments, and correspondingly some inference procedures have been developed in the literature (Biometrika, 91, 2004, 277; Comput. Statist. Data Anal., 57, 2013, 41; J. Comput. Graph. Statist., 13, 2004, 123). In this paper, we discuss regression analysis of such data under a class of flexible semiparametric transformation models, which includes some commonly used models for doubly censored data as special cases. For inference, the non‐parametric maximum likelihood estimation will be developed and in particular, we will present a novel expectation–maximization algorithm with the use of subject‐specific independent Poisson variables. In addition, the asymptotic properties of the proposed estimators are established and an extensive simulation study suggests that the proposed methodology works well for practical situations. The method is applied to an AIDS study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号