首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a new adaptive Type-I progressive hybrid censoring scheme, which has some advantages over the progressive hybrid censoring schemes already discussed in the literature. Based on an adaptive Type-I progressively hybrid censored sample, we derive the exact distribution of the maximum-likelihood estimator (MLE) of the mean lifetime of an exponential distribution as well as confidence intervals for the failure rate using exact distribution, asymptotic distribution, and three parametric bootstrap resampling methods. Furthermore, we provide computational formula for the expected number of failures and investigate the performance of the point and interval estimation for the failure rate in this case. An alternative simple form for the distribution of the MLE under adaptive Type-II progressive hybrid censoring scheme proposed by Ng et al. [Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Res. Logist. 56 (2009), pp. 687–698] is obtained. Finally, from the exact distribution of the MLE, we establish the explicit expression for the Bayes risk of a sampling plan under adaptive Type-II progressive hybrid censoring scheme when a general loss function is used, and present some optimal Bayes solutions under four different progressive hybrid censoring schemes to illustrate the effectiveness of the proposed method.  相似文献   

2.
In this article, we discuss the maximum likelihood estimators and approximate maximum likelihood estimators of the parameters of the Weibull distribution with two different progressively hybrid censoring schemes. We also present the associated expressions of the expected total test time and the expected effective sample size which will be useful for experimental planning purpose. Finally, the efficiency of the point estimation of the parameters based on the two progressive hybrid censoring schemes are compared and the merits of each censoring scheme are discussed.  相似文献   

3.
Epstein [Truncated life tests in the exponential case, Ann. Math. Statist. 25 (1954), pp. 555–564] introduced a hybrid censoring scheme (called Type-I hybrid censoring) and Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Statist. Theory Methods 17 (1988), pp. 1857–1870] derived the exact distribution of the maximum-likelihood estimator (MLE) of the mean of a scaled exponential distribution based on a Type-I hybrid censored sample. Childs et al. [Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Ann. Inst. Statist. Math. 55 (2003), pp. 319–330] provided an alternate simpler expression for this distribution, and also developed analogous results for another hybrid censoring scheme (called Type-II hybrid censoring). The purpose of this paper is to derive the exact bivariate distribution of the MLE of the parameter vector of a two-parameter exponential model based on hybrid censored samples. The marginal distributions are derived and exact confidence bounds for the parameters are obtained. The results are also used to derive the exact distribution of the MLE of the pth quantile, as well as the corresponding confidence bounds. These exact confidence intervals are then compared with parametric bootstrap confidence intervals in terms of coverage probabilities. Finally, we present some numerical examples to illustrate the methods of inference developed here.  相似文献   

4.
The hybrid censoring scheme, which is a mixture of Type-I and Type-II censoring schemes, has been extended to the case of progressive censoring schemes by Kundu and Joarder [Analysis of Type-II progressively hybrid censored data, Comput. Stat. Data Anal. 50 (2006), pp. 2509–2528] and Childs et al. [Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, in Statistical Models and Methods for Biomedical and Technical Systems, F. Vonta, M. Nikulin, N. Limnios, and C. Huber-Carol, eds., Birkhäuser, Boston, MA, 2007, pp. 323–334]. In this paper, we derive a simple expression for the Fisher information contained in Type-I and Type-II progressively hybrid censored data. An illustrative example is provided applicable to a scaled-exponential distribution to demonstrate our methodologies.  相似文献   

5.
In industrial life tests, reliability analysis and clinical trials, the type-II progressive censoring methodology, which allows for random removals of the remaining survival units at each failure time, has become quite popular for analyzing lifetime data. Parameter estimation under progressively type-II censored samples for many common lifetime distributions has been investigated extensively. However, how to estimate unknown parameters of the mixed distribution models under progressive type-II censoring schemes is still a challenging and interesting problem. Based on progressively type-II censored samples, this paper addresses the estimation problem of mixed generalized exponential distributions. In addition, it is observed that the maximum-likelihood estimates (MLEs) cannot be easily obtained in closed form due to the complexity of the likelihood function. Thus, we make good use of the expectation-maximization algorithm to obtain the MLEs. Finally, some simulations are implemented in order to show the performance of the proposed method under finite samples and a case analysis is illustrated.  相似文献   

6.
The EM algorithm is employed to compute maximum-likelihood estimates for beta kernel distributions. Estimation is considered under two censoring schemes: the progressive Type-I censoring and progressive Type-II right censoring schemes. As an application, the EM algorithm is executed to obtain maximum-likelihood estimates for the beta Weibull distribution under the two censoring schemes. A simulation study and two real data sets are used to show the efficiency of the EM algorithm.  相似文献   

7.
ABSTRACT

Based on the tampered failure rate model under the adaptive Type-II progressively hybrid censoring data, we discuss the maximum likelihood estimators of the unknown parameters and acceleration factors in the general step-stress accelerated life tests in this paper. We also construct the exact and unique confidence interval for the extended Weibull shape parameter. In the numerical analysis, we describe the simulation procedures to obtain the adaptive Type-II progressively hybrid censoring data in the step-stress accelerated life tests and present an experimental data to illustrate the performance of the estimators.  相似文献   

8.
Type-I and Type-II censoring schemes are the widely used censoring schemes available for life testing experiments. A mixture of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. Different hybrid censoring schemes have been introduced in recent years. In the last few years, a progressive censoring scheme has also received considerable attention. In this article, we mainly consider the Bayesian inference of the unknown parameters of two-parameter exponential distribution under different hybrid and progressive censoring schemes. It is observed that in general the Bayes estimate and the associated credible interval of any function of the unknown parameters, cannot be obtained in explicit form. We propose to use the Monte Carlo sampling procedure to compute the Bayes estimate and also to construct the associated credible interval. Monte Carlo Simulation experiments have been performed to see the effectiveness of the proposed method in case of Type-I hybrid censored samples. The performances are quite satisfactory. One data analysis has been performed for illustrative purposes.  相似文献   

9.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

10.
This paper presents a step-stress accelerated life test for two stress variables to obtain optimal hold times under a Type-I hybrid censoring scheme. An exponentially distributed life and a cumulative exposure model are assumed. The maximum-likelihood estimates are given, from which the asymptotic variance and the Fisher information matrix are obtained. The optimal test plan is determined for each combination of stress levels by minimizing the asymptotic variance of reliability estimate at a typical operating condition. Finally, simulation results are discussed to illustrate the proposed criteria. Simulation results show that the proposed optimum plan is robust, and the initial estimates have a small effect on optimal values.  相似文献   

11.
A generalized Type-I progressive hybrid censoring scheme was proposed recently to overcome the limitations of the progressive hybrid censoring scheme. In this article, we provide a robust Bayesian method to estimate the unknown parameters of the two-parameter exponential distribution of a generalized Type-I progressive hybrid censored sample. For each parameter, we derive the marginal posterior density functions and the corresponding Bayesian estimators under the squared error loss function. To assess the proposed method, Monte Carlo simulations are performed using a real dataset.  相似文献   

12.
13.
ABSTRACT

A hybrid censoring is a mixture of Type I and Type II censoring where the experiment terminates when either rth failure or predetermined censoring time comes first or later. In this article, we consider order statistics of the Type I censored data and provide a simple expression for their Kullback–Leibler (KL) information. Then, we provide the expressions for the KL information of the Type I and Type II hybrid censored data.  相似文献   

14.
ABSTRACT

Distributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics.  相似文献   

15.
We consider nonparametric estimation of cure-rate based on mixture model under Case-1 interval censoring. We show that the nonparametric maximum-likelihood estimator (NPMLE) of cure-rate is non-unique as well as inconsistent, and propose two estimators based on the NPMLE of the distribution function under this censoring model. We present a cross-validation method for choosing a ‘cut-off’ point needed for the estimators. The limiting distributions of the latter are obtained using extreme-value theory. Graphical illustration of the procedures based on simulated data is provided.  相似文献   

16.
Length-biased data appear when sampling lifetimes by cross-section. Right-censoring may affect the sampled information due to time limitation in following-up, lost to follow-up cases, etc. In this article, we compare by simulations two alternative nonparametric estimators of the lifetime distribution function when the data are length-biased and right-censored. These estimates, recently introduced in the literature, are based on nonparametric maximum-likelihood and moment-based principles. It is shown that the relative benefits associated to each estimator depend on several factors, such as the shape of the underlying distribution, sample size, or censoring level.  相似文献   

17.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

18.
The main goal of this paper is to develop the approximate Bayes estimation of the five-dimensional vector of the parameters and reliability function of a mixture of two inverse Weibull distributions (MTIWD) under Type-2 censoring. Usually, the posterior distribution is complicated under the scheme of Type-2 censoring and the integrals that are involved cannot be obtained in a simple explicit form. In this study, we use Lindley's [Approximate Bayesian method, Trabajos Estadist. 31 (1980), pp. 223–237] approximate form of Bayes estimation in the case of an MTIWD under Type-2 censoring. Later, we calculate the estimated risks (ERs) of the Bayes estimates and compare them with the corresponding ERs of the maximum-likelihood estimates through Monte Carlo simulation. Finally, we analyse a real data set using the findings.  相似文献   

19.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

20.
This work considers goodness-of-fit for the life test data with hybrid censoring. An alternative representation of the Kolmogorov–Smirnov (KS) statistics is provided under Type-I censoring. The alternative representation leads us to approximate the limiting distributions of the KS statistic as a functional of the Brownian bridge for Type-II, Type-I hybrid, and Type-II hybrid censored data. The approximated distributions are used to obtain the critical values of the tests in this context. We found that the proposed KS test procedure for Type-II censoring has more power than the available one(s) in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号