首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Nonparametric predictive inference (NPI) is a powerful frequentist statistical framework based only on an exchangeability assumption for future and past observations, made possible by the use of lower and upper probabilities. In this article, NPI is presented for ordinal data, which are categorical data with an ordering of the categories. The method uses a latent variable representation of the observations and categories on the real line. Lower and upper probabilities for events involving the next observation are presented, and briefly compared to NPI for non ordered categorical data. As application, the comparison of multiple groups of ordinal data is presented.  相似文献   

2.
张晶等 《统计研究》2020,37(11):57-67
近年来,我国消费金融发展迅速,但同时也面临着更加复杂的欺诈和信用风险,为了更好地对消费金融中借贷客户的信用风险进行监测,本文提出了基于稀疏结构连续比率模型的风控方法。相对于传统的二分类模型,该模型的特点是可以处理借贷客户被分为三类或三类以上的有序数据,估计系数的同时能从众多纷繁复杂的数据中自动筛选重要变量,并在变量筛选过程中考虑不同子模型系数的结构特征。通过蒙特卡洛模拟发现,本文所提出的稀疏结构连续比率模型在分类泛化误差和变量筛选上的表现都较好。最后将本文提出的模型应用到实际的消费金融信用风险分析中,针对传统征信信息不足的借款人,通过引入高频电商消费行为数据,利用本文提出的高维有序多分类模型能有效识别借款人的信用风险,可以弥补传统征信方法的不足。  相似文献   

3.
We propose a joint model based on a latent variable for analyzing mixed power series and ordinal longitudinal data with and without missing values. A bivariate probit regression model is used for the missing mechanisms. Random effects are used to take into account the correlation between longitudinal responses. A full likelihood-based approach is used to yield maximum-likelihood estimates of the model parameters. Our model is applied to a medical data set, obtained from an observational study on women where the correlated responses are the ordinal response of osteoporosis of the spine and the power series response of the number of joint damages. Sensitivity analysis is also performed to study the influence of small perturbations of the parameters of the missing mechanisms and overdispersion of the model on likelihood displacement.  相似文献   

4.
In multi-category response models, categories are often ordered. In the case of ordinal response models, the usual likelihood approach becomes unstable with ill-conditioned predictor space or when the number of parameters to be estimated is large relative to the sample size. The likelihood estimates do not exist when the number of observations is less than the number of parameters. The same problem arises if constraint on the order of intercept values is not met during the iterative procedure. Proportional odds models (POMs) are most commonly used for ordinal responses. In this paper, penalized likelihood with quadratic penalty is used to address these issues with a special focus on POMs. To avoid large differences between two parameter values corresponding to the consecutive categories of an ordinal predictor, the differences between the parameters of two adjacent categories should be penalized. The considered penalized-likelihood function penalizes the parameter estimates or differences between the parameter estimates according to the type of predictors. Mean-squared error for parameter estimates, deviance of fitted probabilities and prediction error for ridge regression are compared with usual likelihood estimates in a simulation study and an application.  相似文献   

5.
本文基于自变量与异常点识别隐变量的联合Bayes后验概率,给出了自变量与异常点同时识别的一般方法,且利用Gibbs抽样降低了Bayes后验概率的计算复杂度。其次,针对多值序次数据模型自变量与异常点的同时识别展开详细讨论,给出了同时识别的具体过程。最后通过模拟算例展示了本文方法的有效性。  相似文献   

6.
There are many methods for analyzing longitudinal ordinal response data with random dropout. These include maximum likelihood (ML), weighted estimating equations (WEEs), and multiple imputations (MI). In this article, using a Markov model where the effect of previous response on the current response is investigated as an ordinal variable, the likelihood is partitioned to simplify the use of existing software. Simulated data, generated to present a three-period longitudinal study with random dropout, are used to compare performance of ML, WEE, and MI methods in terms of standardized bias and coverage probabilities. These estimation methods are applied to a real medical data set.  相似文献   

7.
Researchers in the medical, health, and social sciences routinely encounter ordinal variables such as self‐reports of health or happiness. When modelling ordinal outcome variables, it is common to have covariates, for example, attitudes, family income, retrospective variables, measured with error. As is well known, ignoring even random error in covariates can bias coefficients and hence prejudice the estimates of effects. We propose an instrumental variable approach to the estimation of a probit model with an ordinal response and mismeasured predictor variables. We obtain likelihood‐based and method of moments estimators that are consistent and asymptotically normally distributed under general conditions. These estimators are easy to compute, perform well and are robust against the normality assumption for the measurement errors in our simulation studies. The proposed method is applied to both simulated and real data. The Canadian Journal of Statistics 47: 653–667; 2019 © 2019 Statistical Society of Canada  相似文献   

8.

Ordinal data are often modeled using a continuous latent response distribution, which is partially observed through windows of adjacent intervals defined by cutpoints. In this paper we propose the beta distribution as a model for the latent response. The beta distribution has several advantages over the other common distributions used, e.g. , normal and logistic. In particular, it enables separate modeling of location and dispersion effects which is essential in the Taguchi method of robust design. First, we study the problem of estimating the location and dispersion parameters of a single beta distribution (representing a single treatment) from ordinal data assuming known equispaced cutpoints. Two methods of estimation are compared: the maximum likelihood method and the method of moments. Two methods of treating the data are considered: in raw discrete form and in smoothed continuousized form. A large scale simulation study is carried out to compare the different methods. The mean square errors of the estimates are obtained under a variety of parameter configurations. Comparisons are made based on the ratios of the mean square errors (called the relative efficiencies). No method is universally the best, but the maximum likelihood method using continuousized data is found to perform generally well, especially for estimating the dispersion parameter. This method is also computationally much faster than the other methods and does not experience convergence difficulties in case of sparse or empty cells. Next, the problem of estimating unknown cutpoints is addressed. Here the multiple treatments setup is considered since in an actual application, cutpoints are common to all treatments, and must be estimated from all the data. A two-step iterative algorithm is proposed for estimating the location and dispersion parameters of the treatments, and the cutpoints. The proposed beta model and McCullagh's (1980) proportional odds model are compared by fitting them to two real data sets.  相似文献   

9.
Most clinical studies, which investigate the impact of therapy simultaneously, record the frequency of adverse events in order to monitor safety of the intervention. Study reports typically summarise adverse event data by tabulating the frequencies of the worst grade experienced but provide no details of the temporal profiles of specific types of adverse events. Such 'toxicity profiles' are potentially important tools in disease management and in the assessment of newer therapies including targeted treatments and immunotherapy where different types of toxicity may be more common at various times during long-term drug exposure. Toxicity profiles of commonly experienced adverse events occurring due to exposure to long-term treatment could assist in evaluating the costs of the health care benefits of therapy. We show how to generate toxicity profiles using an adaptation of the ordinal time-to-event model comprising of a two-step process, involving estimation of the multinomial response probabilities using multinomial logistic regression and combining these with recurrent time to event hazard estimates to produce cumulative event probabilities for each of the multinomial adverse event response categories. Such a model permits the simultaneous assessment of the risk of events over time and provides cumulative risk probabilities for each type of adverse event response. The method can be applied more generally by using different models to estimate outcome/response probabilities. The method is illustrated by developing toxicity profiles for three distinct types of adverse events associated with two treatment regimens for patients with advanced breast cancer.  相似文献   

10.
In many panel studies, bivariate ordinal–nominal responses are measured and the aim is to investigate the effects of explanatory variables on these responses. A regression analysis for these types of data must allow for the correlation among responses of the same individual. To analyse such ordinal–nominal responses using a proper weighting approach, an ordinal–nominal bivariate transition model is proposed and maximum likelihood is used to find the parameter estimates. We propose a method in which the likelihood function can be partitioned to make possible the use of existing software. The approach is applied to the Labour Force Survey data in Iran, where the ordinal response, at the first period, is the duration of unemployment for unemployed people and the nominal response, in the second period, is economic activity status of these individuals. The interest is to find the reasons for staying unemployed or moving to another status of economic activity.  相似文献   

11.
The proportional odds model (POM) is commonly used in regression analysis to predict the outcome for an ordinal response variable. The maximum likelihood estimation (MLE) approach is typically used to obtain the parameter estimates. The likelihood estimates do not exist when the number of parameters, p, is greater than the number of observations n. The MLE also does not exist if there are no overlapping observations in the data. In a situation where the number of parameters is less than the sample size but p is approaching to n, the likelihood estimates may not exist, and if they exist they may have quite large standard errors. An estimation method is proposed to address the last two issues, i.e. complete separation and the case when p approaches n, but not the case when p>n. The proposed method does not use any penalty term but uses pseudo-observations to regularize the observed responses by downgrading their effect so that they become close to the underlying probabilities. The estimates can be computed easily with all commonly used statistical packages supporting the fitting of POMs with weights. Estimates are compared with MLE in a simulation study and an application to the real data.  相似文献   

12.
Ordinal classification is an important area in statistical machine learning, where labels exhibit a natural order. One of the major goals in ordinal classification is to correctly predict the relative order of instances. We develop a novel concordance-based approach to ordinal classification, where a concordance function is introduced and a penalized smoothed method for optimization is designed. Variable selection using the L 1 $$ {L}_1 $$ penalty is incorporated for sparsity considerations. Within the set of classification rules that maximize the concordance function, we find optimal thresholds to predict labels by minimizing a loss function. After building the classifier, we derive nonparametric estimation of class conditional probabilities. The asymptotic properties of the estimators as well as the variable selection consistency are established. Extensive simulations and real data applications show the robustness and advantage of the proposed method in terms of classification accuracy, compared with other existing methods.  相似文献   

13.
In response surface methodology, one is usually interested in estimating the optimal conditions based on a small number of experimental runs which are designed to optimally sample the experimental space. Typically, regression models are constructed from the experimental data and interrogated in order to provide a point estimate of the independent variable settings predicted to optimize the response. Unfortunately, these point estimates are rarely accompanied with uncertainty intervals. Though classical frequentist confidence intervals can be constructed for unconstrained quadratic models, higher order, constrained or nonlinear models are often encountered in practice. Existing techniques for constructing uncertainty estimates in such situations have not been implemented widely, due in part to the need to set adjustable parameters or because of limited or difficult applicability to constrained or nonlinear problems. To address these limitations a Bayesian method of determining credible intervals for response surface optima was developed. The approach shows good coverage probabilities on two test problems, is straightforward to implement and is readily applicable to the kind of constrained and/or nonlinear problems that frequently appear in practice.  相似文献   

14.
The authors show how ranked set sampling, both balanced and unbalanced, can be extended to ordered categorical variables with the goal of estimating the probabilities of all categories. They use ordinal logistic regression to aid in the ranking of the ordinal variable of interest. They also propose an optimal allocation scheme and methods for implementing it under either perfect or imperfect rankings. Results from a simulation study using data from the third National Health and Nutrition Examination Survey indicate that the use of ordinal logistic regression in ranking leads to substantial gains in precision for estimation of cell probabilities.  相似文献   

15.
A random effects model for analyzing mixed longitudinal count and ordinal data is presented where the count response is inflated in two points (k and l) and an (k,l)-Inflated Power series distribution is used as its distribution. A full likelihood-based approach is used to obtain maximum likelihood estimates of parameters of the model. For data with non-ignorable missing values models with probit model for missing mechanism are used.The dependence between longitudinal sequences of responses and inflation parameters are investigated using a random effects approach. Also, to investigate the correlation between mixed ordinal and count responses of each individuals at each time, a shared random effect is used. In order to assess the performance of the model, a simulation study is performed for a case that the count response has (k,l)-Inflated Binomial distribution. Performance comparisons of count-ordinal random effect model, Zero-Inflated ordinal random effects model and (k,l)-Inflated ordinal random effects model are also given. The model is applied to a real social data set from the first two waves of the national longitudinal study of adolescent to adult health (Add Health study). In this data set, the joint responses are the number of days in a month that each individual smoked as the count response and the general health condition of each individual as the ordinal response. For the count response there is incidence of excess values of 0 and 30.  相似文献   

16.
Ordinal data, such as student's grades or customer satisfaction surveys, are widely used in daily life. We can fit a probit or logistic regression model to the ordinal data using software such as SAS and get the estimates of regression parameters. However, it is hard to define residuals and detect outliers due to the fact that the estimated probabilities of an observation falling in every category form a vector instead of a scalar. With the help of latent variable and latent residuals, a Bayesian perspective of detecting outliers is explored and several methods were proposed in this article. Several figures are also given.  相似文献   

17.
In this paper, a joint model for analyzing multivariate mixed ordinal and continuous responses, where continuous outcomes may be skew, is presented. For modeling the discrete ordinal responses, a continuous latent variable approach is considered and for describing continuous responses, a skew-normal mixed effects model is used. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation. Some simulation studies are performed for illustration of the proposed approach. The results of the simulation studies show that the use of the separate models or the normal distributional assumption for shared random effects and within-subject errors of continuous and ordinal variables, instead of the joint modeling under a skew-normal distribution, leads to biased parameter estimates. The approach is used for analyzing a part of the British Household Panel Survey (BHPS) data set. Annual income and life satisfaction are considered as the continuous and the ordinal longitudinal responses, respectively. The annual income variable is severely skewed, therefore, the use of the normality assumption for the continuous response does not yield acceptable results. The results of data analysis show that gender, marital status, educational levels and the amount of money spent on leisure have a significant effect on annual income, while marital status has the highest impact on life satisfaction.  相似文献   

18.
We propose a general latent variable model for multivariate ordinal categorical variables, in which both the responses and the covariates are ordinal, to assess the effect of the covariates on the responses and to model the covariance structure of the response variables. A?fully Bayesian approach is employed to analyze the model. The Gibbs sampler is used to simulate the joint posterior distribution of the latent variables and the parameters, and the parameter expansion and reparameterization techniques are used to speed up the convergence procedure. The proposed model and method are demonstrated by simulation studies and a real data example.  相似文献   

19.
A popular choice when analyzing ordinal data is to consider the cumulative proportional odds model to relate the marginal probabilities of the ordinal outcome to a set of covariates. However, application of this model relies on the condition of identical cumulative odds ratios across the cut-offs of the ordinal outcome; the well-known proportional odds assumption. This paper focuses on the assessment of this assumption while accounting for repeated and missing data. In this respect, we develop a statistical method built on multiple imputation (MI) based on generalized estimating equations that allows to test the proportionality assumption under the missing at random setting. The performance of the proposed method is evaluated for two MI algorithms for incomplete longitudinal ordinal data. The impact of both MI methods is compared with respect to the type I error rate and the power for situations covering various numbers of categories of the ordinal outcome, sample sizes, rates of missingness, well-balanced and skewed data. The comparison of both MI methods with the complete-case analysis is also provided. We illustrate the use of the proposed methods on a quality of life data from a cancer clinical trial.  相似文献   

20.
In this paper, we propose a quantile approach to the multi-index semiparametric model for an ordinal response variable. Permitting non-parametric transformation of the response, the proposed method achieves a root-n rate of convergence and has attractive robustness properties. Further, the proposed model allows additional indices to model the remaining correlations between covariates and the residuals from the single-index, considerably reducing the error variance and thus leading to more efficient prediction intervals (PIs). The utility of the model is demonstrated by estimating PIs for functional status of the elderly based on data from the second longitudinal study of aging. It is shown that the proposed multi-index model provides significantly narrower PIs than competing models. Our approach can be applied to other areas in which the distribution of future observations must be predicted from ordinal response data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号