首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compare posterior and predictive estimators and probabilities in response-adaptive randomization designs for two- and three-group clinical trials with binary outcomes. Adaptation based upon posterior estimates are discussed, as are two predictive probability algorithms: one using the traditional definition, the other using a skeptical distribution. Optimal and natural lead-in designs are covered. Simulation studies show that efficacy comparisons lead to more adaptation than center comparisons, though at some power loss, skeptically predictive efficacy comparisons and natural lead-in approaches lead to less adaptation but offer reduced allocation variability. Though nuanced, these results help clarify the power-adaptation trade-off in adaptive randomization.  相似文献   

2.
In practice, it is important to find optimal allocation strategies for continuous response with multiple treatments under some optimization criteria. In this article, we focus on exponential responses. For a multivariate test of homogeneity, we obtain the optimal allocation strategies to maximize power while (1) fixing sample size and (2) fixing expected total responses. Then the doubly adaptive biased coin design [Hu, F., Zhang, L.-X., 2004. Asymptotic properties of doubly adaptive biased coin designs for multi-treatment clinical trials. The Annals of Statistics 21, 268–301] is used to implement the optimal allocation strategies. Simulation results show that the proposed procedures have advantages over complete randomization with respect to both inferential (power) and ethical standpoints on average. It is important to note that one can usually implement optimal allocation strategies numerically for other continuous responses, though it is usually not easy to get the closed form of the optimal allocation theoretically.  相似文献   

3.
Response-adaptive (RA) allocation designs can skew the allocation of incoming subjects toward the better performing treatment group based on the previously accrued responses. While unstable estimators and increased variability can adversely affect adaptation in early trial stages, Bayesian methods can be implemented with decreasingly informative priors (DIP) to overcome these difficulties. DIPs have been previously used for binary outcomes to constrain adaptation early in the trial, yet gradually increase adaptation as subjects accrue. We extend the DIP approach to RA designs for continuous outcomes, primarily in the normal conjugate family by functionalizing the prior effective sample size to equal the unobserved sample size. We compare this effective sample size DIP approach to other DIP formulations. Further, we considered various allocation equations and assessed their behavior utilizing DIPs. Simulated clinical trials comparing the behavior of these approaches with traditional Frequentist and Bayesian RA as well as balanced designs show that the natural lead-in approaches maintain improved treatment with lower variability and greater power.  相似文献   

4.
In stratified sampling, methods for the allocation of effort among strata usually rely on some measure of within-stratum variance. If we do not have enough information about these variances, adaptive allocation can be used. In adaptive allocation designs, surveys are conducted in two phases. Information from the first phase is used to allocate the remaining units among the strata in the second phase. Brown et al. [Adaptive two-stage sequential sampling, Popul. Ecol. 50 (2008), pp. 239–245] introduced an adaptive allocation sampling design – where the final sample size was random – and an unbiased estimator. Here, we derive an unbiased variance estimator for the design, and consider a related design where the final sample size is fixed. Having a fixed final sample size can make survey-planning easier. We introduce a biased Horvitz–Thompson type estimator and a biased sample mean type estimator for the sampling designs. We conduct two simulation studies on honey producers in Kurdistan and synthetic zirconium distribution in a region on the moon. Results show that the introduced estimators are more efficient than the available estimators for both variable and fixed sample size designs, and the conventional unbiased estimator of stratified simple random sampling design. In order to evaluate efficiencies of the introduced designs and their estimator furthermore, we first review some well-known adaptive allocation designs and compare their estimator with the introduced estimators. Simulation results show that the introduced estimators are more efficient than available estimators of these well-known adaptive allocation designs.  相似文献   

5.
The Zernike polynomials arise in several applications such as optical metrology or image analysis on a circular domain. In the present paper, we determine optimal designs for regression models which are represented by expansions in terms of Zernike polynomials. We consider two estimation methods for the coefficients in these models and determine the corresponding optimal designs. The first one is the classical least squares method and Φ p -optimal designs in the sense of Kiefer [Kiefer, J., 1974, General equivalence theory for optimum designs (approximate theory). Annals of Statistics, 2 849–879.] are derived, which minimize an appropriate functional of the covariance matrix of the least squares estimator. It is demonstrated that optimal designs with respect to Kiefer's Φ p -criteria (p>?∞) are essentially unique and concentrate observations on certain circles in the experimental domain. E-optimal designs have the same structure but it is shown in several examples that these optimal designs are not necessarily uniquely determined. The second method is based on the direct estimation of the Fourier coefficients in the expansion of the expected response in terms of Zernike polynomials and optimal designs minimizing the trace of the covariance matrix of the corresponding estimator are determined. The designs are also compared with the uniform designs on a grid, which is commonly used in this context.  相似文献   

6.
The problem of comparing v test treatments simultaneously with a control treatment when k, v ⩾ 3 is considered. Following the work of Majumdar (1992), we use exact design theory to derive Bayes A-optimal block designs and optimal Г-minimax designs for a more general prior assumption for the one-way elimination of heterogeneity model. Examples of robust optimal designs, highly efficient designs, and the comparisons of the approximate optimal designs that are derived by our methods and by some other existing rounding-off schemes when using Owen's procedure are also provided.  相似文献   

7.
We consider response adaptive designs when the binary response may be misclassified and extend relevant results in the literature. We derive the optimal allocations under various objectives and examine the relationship between the power of statistical test and the variability of treatment allocation. Asymptotically best response adaptive randomization procedures and effects of misclassification on the optimal allocations are investigated. A real-life clinical trial is also discussed to illustrate our proposed approach.  相似文献   

8.
ABSTRACT

This paper is concerned with the problem of estimation for the mean of the selected population from two normal populations with unknown means and common known variance in a Bayesian framework. The empirical Bayes estimator, when there are available additional observations, is derived and its bias and risk function are computed. The expected bias and risk of the empirical Bayes estimator and the intuitive estimator are compared. It is shown that the empirical Bayes estimator is asymptotically optimal and especially dominates the intuitive estimator in terms of Bayes risk, with respect to any normal prior. Also, the Bayesian correlation between the mean of the selected population (random parameter) and some interested estimators are obtained and compared.  相似文献   

9.
In a response-adaptive design, we review and update the trial on the basis of outcomes in order to achieve a specific goal. Response-adaptive designs for clinical trials are usually constructed to achieve a single objective. In this paper, we develop a new adaptive allocation rule to improve current strategies for building response-adaptive designs to construct multiple-objective repeated measurement designs. This new rule is designed to increase estimation precision and treatment benefit by assigning more patients to a better treatment sequence. We demonstrate that designs constructed under the new proposed allocation rule can be nearly as efficient as fixed optimal designs in terms of the mean squared error, while leading to improved patient care.  相似文献   

10.
In vitro permeation tests (IVPT) offer accurate and cost-effective development pathways for locally acting drugs, such as topical dermatological products. For assessment of bioequivalence, the FDA draft guidance on generic acyclovir 5% cream introduces a new experimental design, namely the single-dose, multiple-replicate per treatment group design, as IVPT pivotal study design. We examine the statistical properties of its hypothesis testing method—namely the mixed scaled average bioequivalence (MSABE). Meanwhile, some adaptive design features in clinical trials can help researchers make a decision earlier with fewer subjects or boost power, saving resources, while controlling the impact on family-wise error rate. Therefore, we incorporate MSABE in an adaptive design combining the group sequential design and sample size re-estimation. Simulation studies are conducted to study the passing rates of the proposed methods—both within and outside the average bioequivalence limits. We further consider modifications to the adaptive designs applied for IVPT BE trials, such as Bonferroni's adjustment and conditional power function. Finally, a case study with real data demonstrates the advantages of such adaptive methods.  相似文献   

11.
In this article the problem of the optimal selection and allocation of time points in repeated measures experiments is considered. D‐ optimal designs for linear regression models with a random intercept and first order auto‐regressive serial correlations are computed numerically and compared with designs having equally spaced time points. When the order of the polynomial is known and the serial correlations are not too small, the comparison shows that for any fixed number of repeated measures, a design with equally spaced time points is almost as efficient as the D‐ optimal design. When, however, there is no prior knowledge about the order of the underlying polynomial, the best choice in terms of efficiency is a D‐ optimal design for the highest possible relevant order of the polynomial. A design with equally‐spaced time points is the second best choice  相似文献   

12.
In this paper, we introduce a new adaptive Type-I progressive hybrid censoring scheme, which has some advantages over the progressive hybrid censoring schemes already discussed in the literature. Based on an adaptive Type-I progressively hybrid censored sample, we derive the exact distribution of the maximum-likelihood estimator (MLE) of the mean lifetime of an exponential distribution as well as confidence intervals for the failure rate using exact distribution, asymptotic distribution, and three parametric bootstrap resampling methods. Furthermore, we provide computational formula for the expected number of failures and investigate the performance of the point and interval estimation for the failure rate in this case. An alternative simple form for the distribution of the MLE under adaptive Type-II progressive hybrid censoring scheme proposed by Ng et al. [Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Res. Logist. 56 (2009), pp. 687–698] is obtained. Finally, from the exact distribution of the MLE, we establish the explicit expression for the Bayes risk of a sampling plan under adaptive Type-II progressive hybrid censoring scheme when a general loss function is used, and present some optimal Bayes solutions under four different progressive hybrid censoring schemes to illustrate the effectiveness of the proposed method.  相似文献   

13.
We find optimal designs for linear models using a novel algorithm that iteratively combines a semidefinite programming (SDP) approach with adaptive grid techniques. The proposed algorithm is also adapted to find locally optimal designs for nonlinear models. The search space is first discretized, and SDP is applied to find the optimal design based on the initial grid. The points in the next grid set are points that maximize the dispersion function of the SDP-generated optimal design using nonlinear programming. The procedure is repeated until a user-specified stopping rule is reached. The proposed algorithm is broadly applicable, and we demonstrate its flexibility using (i) models with one or more variables and (ii) differentiable design criteria, such as A-, D-optimality, and non-differentiable criterion like E-optimality, including the mathematically more challenging case when the minimum eigenvalue of the information matrix of the optimal design has geometric multiplicity larger than 1. Our algorithm is computationally efficient because it is based on mathematical programming tools and so optimality is assured at each stage; it also exploits the convexity of the problems whenever possible. Using several linear and nonlinear models with one or more factors, we show the proposed algorithm can efficiently find optimal designs.  相似文献   

14.
Some new tests of odds ratio homogeneity for fourfold tables are compared with the mixture model score test in the sparse-data case (many tables, small margins per table). Based on general empirical Bayes inequalities, the new tests have competitive power for 1:R matched designs, and superior power for more balanced designs.  相似文献   

15.
Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce.  相似文献   

16.
We study designs, optimal up to and including terms that are O(n ?1), for weighted least squares regression, when the weights are intended to be inversely proportional to the variances but are estimated with random error. We take a finite, but arbitrarily large, design space from which the support points are to be chosen, and obtain the optimal proportions of observations to be assigned to each point. Specific examples of D- and I-optimal design for polynomial responses are studied. In some cases the same designs that are optimal under homoscedasticity remain so for a range of variance functions; in others there tend to be more support points than are required in the homoscedastic case. We also exhibit minimax designs, that minimize the maximum, over finite classes of variance functions, value of the loss. These also tend to have more support points, often resulting from the breaking down of replicates into clusters.  相似文献   

17.
Summary.  Few references deal with response-adaptive randomization procedures for survival outcomes and those that do either dichotomize the outcomes or use a non-parametric approach. In this paper, the optimal allocation approach and a parametric response-adaptive randomization procedure are used under exponential and Weibull distributions. The optimal allocation proportions are derived for both distributions and the doubly adaptive biased coin design is applied to target the optimal allocations. The asymptotic variance of the procedure is obtained for the exponential distribution. The effect of intrinsic delay of survival outcomes is treated. These findings are based on rigorous theory but are also verified by simulation. It is shown that using a doubly adaptive biased coin design to target the optimal allocation proportion results in more patients being randomized to the better performing treatment without loss of power. We illustrate our procedure by redesigning a clinical trial.  相似文献   

18.
two‐stage studies may be chosen optimally by minimising a single characteristic like the maximum sample size. However, given that an investigator will initially select a null treatment e?ect and the clinically relevant di?erence, it is better to choose a design that also considers the expected sample size for each of these values. The maximum sample size and the two expected sample sizes are here combined to produce an expected loss function to ?nd designs that are admissible. Given the prior odds of success and the importance of the total sample size, minimising the expected loss gives the optimal design for this situation. A novel triangular graph to represent the admissible designs helps guide the decision‐making process. The H 0‐optimal, H 1‐optimal, H 0‐minimax and H 1‐minimax designs are all particular cases of admissible designs. The commonly used H 0‐optimal design is rarely good when allowing stopping for e?cacy. Additionally, the δ‐minimax design, which minimises the maximum expected sample size, is sometimes admissible under the loss function. However, the results can be varied and each situation will require the evaluation of all the admissible designs. Software to do this is provided. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Confidence intervals for the intraclass correlation coefficient (ρ) are used to determine the optimal allocation of experimental material in one-way random effects models. Designs that produce narrow intervals are preferred since they provide greater precision to estimate ρ. Assuming the total cost and the relative cost of the two stages of sampling are fixed, the authors investigate the number of classes and the number of individuals per class required to minimize the expected length of confidence intervals. We obtain results using asymptotic theory and compare these results to those obtained using exact calculations. The best design depends on the unknown value of ρ. Minimizing the maximum expected length of confidence intervals guards against worst-case scenarios. A good overall recommendation based on asymptotic results is to choose a design having classes of size 2 + √4 + 3r, where r is the relative cost of sampling at the class-level compared to the individual-level. If r = 0, then the overall cost is the sample size and the recommendation reduces to a design having classes of size 4.  相似文献   

20.
A sufficient condition for the Bayes A-optimality of block designs when comparing a standard treatment with v test treatments is given by Majumdar. (In:Optimal Design and Analysis of Experiments, Y. Dodge, V. V. Fedorov and H. P. Wynn (Eds.), 15-27, North-Holland, 1988). The priors that he considers depend on a constant α ε [0, ∞), with α - 0 corresponding to no prior information at all. The given sufficient condition, consequently, also depends on a. Large families of optimal and highly efficient designs are only known for the case α - 0. We will show how some of the results for α - 0 can be extended to obtain large families of optimal and highly efficient designs for arbitrary values of α. In addition, these results are useful when considering design robustness against an improper choice of α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号