首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varying-coefficient models are very useful for longitudinal data analysis. In this paper, we focus on varying-coefficient models for longitudinal data. We develop a new estimation procedure using Cholesky decomposition and profile least squares techniques. Asymptotic normality for the proposed estimators of varying-coefficient functions has been established. Monte Carlo simulation studies show excellent finite-sample performance. We illustrate our methods with a real data example.  相似文献   

2.
A Bayesian approach is developed for analysing item response models with nonignorable missing data. The relevant model for the observed data is estimated concurrently in conjunction with the item response model for the missing-data process. Since the approach is fully Bayesian, it can be easily generalized to more complicated and realistic models, such as those models with covariates. Furthermore, the proposed approach is illustrated with item response data modelled as the multidimensional graded response models. Finally, a simulation study is conducted to assess the extent to which the bias caused by ignoring the missing-data mechanism can be reduced.  相似文献   

3.
In this article we present a robust and efficient variable selection procedure by using modal regression for varying-coefficient models with longitudinal data. The new method is proposed based on basis function approximations and a group version of the adaptive LASSO penalty, which can select significant variables and estimate the non-zero smooth coefficient functions simultaneously. Under suitable conditions, we establish the consistency in variable selection and the oracle property in estimation. A simulation study and two real data examples are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

4.
In haemodialysis patients, vascular access type is of paramount importance. Although recent studies have found that central venous catheter is often associated with poor outcomes and switching to arteriovenous fistula is beneficial, studies have not fully elucidated how the effect of switching of access on outcomes changes over time for patients on dialysis and whether the effect depends on switching time. In this paper, we characterise the switching access type effect on outcomes for haemodialysis patients. This is achieved by using a new class of multiple-index varying-coefficient (MIVC) models. We develop a new estimation procedure for MIVC models based on local linear, profile least-square method and Cholesky decomposition. Monte Carlo simulation studies show excellent finite sample performance. Finally, we analyse the dialysis data using our method.  相似文献   

5.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

6.
The varying-coefficient single-index model has two distinguishing features: partially linear varying-coefficient functions and a single-index structure. This paper proposes a nonparametric method based on smoothing splines for estimating varying-coefficient functions and an unknown link function. Moreover, the average derivative estimation method is applied to obtain the single-index parameter estimates. For interval inference, Bayesian confidence intervals were obtained based on Bayes models for varying-coefficient functions and the link function. The performance of the proposed method is examined both through simulations and by applying it to Boston housing data.  相似文献   

7.
We consider local linear estimation of varying-coefficient models in which the data are observed with multiplicative distortion which depends on an observed confounding variable. At first, each distortion function is estimated by non parametrically regressing the absolute value of contaminated variable on the confounder. Secondly, the coefficient functions are estimated by the local least square method on the basis of the predictors of latent variables, which are obtained in terms of the estimated distorting functions. We also establish the asymptotic normality of our proposed estimators and discuss the inference about the distortion function. Simulation studies are carried out to assess the finite sample performance of the proposed estimators and a real dataset of Pima Indians diabetes is analyzed for illustration.  相似文献   

8.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

9.
In some fields, we are forced to work with missing data in multivariate time series. Unfortunately, the data analysis in this context cannot be carried out in the same way as in the case of complete data. To deal with this problem, a Bayesian analysis of multivariate threshold autoregressive models with exogenous inputs and missing data is carried out. In this paper, Markov chain Monte Carlo methods are used to obtain samples from the involved posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method in this class of multivariate process. The number of regimes is estimated using marginal likelihood or product parameter-space strategies.  相似文献   

10.
This paper develops a robust estimation procedure for the varying-coefficient partially linear model via local rank technique. The new procedure provides a highly efficient and robust alternative to the local linear least-squares method. In other words, the proposed method is highly efficient across a wide class of non-normal error distributions and it only loses a small amount of efficiency for normal error. Moreover, a test for the hypothesis of constancy for the nonparametric component is proposed. The test statistic is simple and thus the test procedure can be easily implemented. We conduct Monte Carlo simulation to examine the finite sample performance of the proposed procedures and apply them to analyse the environment data set. Both the theoretical and the numerical results demonstrate that the performance of our approach is at least comparable to those existing competitors.  相似文献   

11.
Missing data, a common but challenging issue in most studies, may lead to biased and inefficient inferences if handled inappropriately. As a natural and powerful way for dealing with missing data, Bayesian approach has received much attention in the literature. This paper reviews the recent developments and applications of Bayesian methods for dealing with ignorable and non-ignorable missing data. We firstly introduce missing data mechanisms and Bayesian framework for dealing with missing data, and then introduce missing data models under ignorable and non-ignorable missing data circumstances based on the literature. After that, important issues of Bayesian inference, including prior construction, posterior computation, model comparison and sensitivity analysis, are discussed. Finally, several future issues that deserve further research are summarized and concluded.  相似文献   

12.
Latent Markov models (LMMs) are widely used in the analysis of heterogeneous longitudinal data. However, most existing LMMs are developed in fully observed data without missing entries. The main objective of this study is to develop a Bayesian approach for analyzing the LMMs with non-ignorable missing data. Bayesian methods for estimation and model comparison are discussed. The empirical performance of the proposed methodology is evaluated through simulation studies. An application to a data set derived from National Longitudinal Survey of Youth 1997 is presented.  相似文献   

13.
Abstract

We suggest shrinkage based technique for estimating covariance matrix in the high-dimensional normal model with missing data. Our approach is based on the monotone missing scheme assumption, meaning that missing values patterns occur completely at random. Our asymptotic framework allows the dimensionality p grow to infinity together with the sample size, N, and extends the methodology of Ledoit and Wolf (2004) Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance matrices. J. Multivariate Anal. 88:365411.[Crossref], [Web of Science ®] [Google Scholar] to the case of two-step monotone missing data. Two new shrinkage-type estimators are derived and their dominance properties over the Ledoit and Wolf (2004) Ledoit, O., Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance matrices. J. Multivariate Anal. 88:365411.[Crossref], [Web of Science ®] [Google Scholar] estimator are shown under the expected quadratic loss. We perform a simulation study and conclude that the proposed estimators are successful for a range of missing data scenarios.  相似文献   

14.
It is well known that M-estimation is a widely used method for robust statistical inference and the varying coefficient models have been widely applied in many scientific areas. In this paper, we consider M-estimation and model identification of bivariate varying coefficient models for longitudinal data. We make use of bivariate tensor-product B-splines as an approximation of the function and consider M-type regression splines by minimizing the objective convex function. Mean and median regressions are included in this class. Moreover, with a double smoothly clipped absolute deviation (SCAD) penalization, we study the problem of simultaneous structure identification and estimation. Under approximate conditions, we show that the proposed procedure possesses the oracle property in the sense that it is as efficient as the estimator when the true model is known prior to statistical analysis. Simulation studies are carried out to demonstrate the methodological power of the proposed methods with finite samples. The proposed methodology is illustrated with an analysis of a real data example.  相似文献   

15.
We propose a new iterative algorithm, called model walking algorithm, to the Bayesian model averaging method on the longitudinal regression models with AR(1) random errors within subjects. The Markov chain Monte Carlo method together with the model walking algorithm are employed. The proposed method is successfully applied to predict the progression rates on a myopia intervention trial in children.  相似文献   

16.
HIV viral dynamic models have received much attention in the literature. Long-term viral dynamics may be modelled by semiparametric nonlinear mixed-effect models, which incorporate large variation between subjects and autocorrelation within subjects and are flexible in modelling complex viral load trajectories. Time-dependent covariates may be introduced in the dynamic models to partially explain the between-individual variations. In the presence of measurement errors and missing data in time-dependent covariates, we show that the commonly used two-step method may give approximately unbiased estimates but may under-estimate standard errors. We propose a two-stage bootstrap method to adjust the standard errors in the two-step method and a likelihood method.  相似文献   

17.
18.
The method of estimated generalized least squares estimation of multiple response models is extended to the randomly missing date case. This estimation procedure is computationally simply when there are many missing data but the number of distinct patterns of missing data for the response vectors is small. The consistency and asymptotic normality of the proposed estimators are established.  相似文献   

19.
This article deals with model comparison as an essential part of generalized linear modelling in the presence of covariates missing not at random (MNAR). We provide an evaluation of the performances of some of the popular model selection criteria, particularly of deviance information criterion (DIC) and weighted L (WL) measure, for comparison among a set of candidate MNAR models. In addition, we seek to provide deviance and quadratic loss-based model selection criteria with alternative penalty terms targeting directly the MNAR models. This work is motivated by the need in the literature to understand the performances of these important model selection criteria for comparison among a set of MNAR models. A Monte Carlo simulation experiment is designed to assess the finite sample performances of these model selection criteria in the context of interest under different scenarios for missingness amounts. Some naturally driven DIC and WL extensions are also discussed and evaluated.  相似文献   

20.
In longitudinal clinical studies, after randomization at baseline, subjects are followed for a period of time for development of symptoms. The interested inference could be the mean change from baseline to a particular visit in some lab values, the proportion of responders to some threshold category at a particular visit post baseline, or the time to some important event. However, in some applications, the interest may be in estimating the cumulative distribution function (CDF) at a fixed time point post baseline. When the data are fully observed, the CDF can be estimated by the empirical CDF. When patients discontinue prematurely during the course of the study, the empirical CDF cannot be directly used. In this paper, we use multiple imputation as a way to estimate the CDF in longitudinal studies when data are missing at random. The validity of the method is assessed on the basis of the bias and the Kolmogorov–Smirnov distance. The results suggest that multiple imputation yields less bias and less variability than the often used last observation carried forward method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号