首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a modification of the moment estimators for the two-parameter weighted Lindley distribution. The modification replaces the second sample moment (or equivalently the sample variance) by a certain sample average which is bounded on the unit interval for all values in the sample space. In this method, the estimates always exist uniquely over the entire parameter space and have consistency and asymptotic normality over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties. Monte Carlo simulation study showed that the proposed modified moment estimators have smaller biases and smaller mean-square errors than the existing moment estimators and are compared favourably with the maximum likelihood estimators in terms of bias and mean-square error. Three illustrative examples are finally presented.  相似文献   

2.
Two statistics based on simple, closed form estimators are examined for use in interval estimation of reliability and of the location parameter of the extreme-value distribution. Properties of the estimators are studied by Monte Carlo simulation, and procedures for interval estimation and tests of hypotheses for the location parameter and reliability are provided.  相似文献   

3.
In extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.  相似文献   

4.
The maximum likelihood and Bayesian approaches have been considered for the two-parameter generalized exponential distribution based on record values with the number of trials following the record values (inter-record times). The maximum likelihood estimates are obtained under the inverse sampling and the random sampling schemes. It is shown that the maximum likelihood estimator of the shape parameter converges in mean square to the true value when the scale parameter is known. The Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The confidence intervals for the parameters are constructed based on asymptotic and Bayesian methods. The Bayes and the maximum likelihood estimators are compared in terms of the estimated risk by the Monte Carlo simulations. The comparison of the estimators based on the record values and the record values with their corresponding inter-record times are performed by using Monte Carlo simulations.  相似文献   

5.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

6.
This paper proposes an optimal estimation method for the shape parameter, probability density function and upper tail probability of the Pareto distribution. The new method is based on a weighted empirical distribution function. The exact efficiency functions of the estimators relative to the existing estimators are derived. The paper gives L 1-optimal and L 2-optimal weights for the new weighted estimator. Monte Carlo simulation results confirm the theoretical conclusions. Both theoretical and simulation results show that the new estimation method is more efficient relative to several existing methods in many situations.  相似文献   

7.
The exponential failure model is studied from the hierarchical point of view. The parameter of the exponential is considered as a random variable with a gamma function as a prior. Futhermore, the scale parameter of the gamma prior isassumed to be a random variable with known hyperprior. Under these assumptions estimators are derived for the exponential parameter and reliability function. Monte Carlo simulation is utilized to compare the various estimators.  相似文献   

8.
Inference about reliability parameter with gamma strength and stress   总被引:3,自引:0,他引:3  
The statistical inference about the reliability parameter R involving independent gamma stress and strength is considered. Assuming the two shape parameters are known arbitrary real numbers, the UMVUE of R is obtained. The performances of the UMVUE and the MLE are compared numerically based on extensive Monte Carlo simulation. Simulation studies indicate that the performance of the two estimators are about the same. The MLE is preferred due to its computational simplicity.  相似文献   

9.
In this paper, we consider dynamic panel data models where the autoregressive parameter changes over time. We propose the GMM and ML estimators for this model. We conduct Monte Carlo simulation to compare the performance of these two estimators. The simulation results show that the ML estimator outperforms the GMM estimator.  相似文献   

10.
The problem of estimation of the parameters of two-parameter inverse Weibull distributions has been considered. We establish existence and uniqueness of the maximum likelihood estimators of the scale and shape parameters. We derive Bayes estimators of the parameters under the entropy loss function. Hierarchical Bayes estimator, equivariant estimator and a class of minimax estimators are derived when shape parameter is known. Ordered Bayes estimators using information about second population are also derived. We investigate the reliability of multi-component stress-strength model using classical and Bayesian approaches. Risk comparison of the classical and Bayes estimators is done using Monte Carlo simulations. Applications of the proposed estimators are shown using real data sets.  相似文献   

11.
Parameter values of nonlinear statistical models are typically estimated from data using iterative numerical procedures. The resulting joint sampling distribution of the parameter estimators is often intractable, resulting in the use of approximators or Monte Carlo simulation to determine properties of the sampling distribution.

This paper develops methods, using linear and higher-order approximators as control variates that reduce the variance of the Monte Carlo estimator by orders of magnitude. Estimation of means, higher-order raw moments, variances, covariances, and percentiles is considered.  相似文献   

12.
The two parameter estimator proposed by Özkale and Kaç?ranlar [The restricted and unrestricted two parameter estimators. Comm Statist Theory Methods. 2007;36(15):2707–2725] is a general estimator which includes the ordinary least squares, the ridge and the Liu estimators as special cases. In the present paper we introduce Almon two parameter estimator based on the two parameter estimation procedure to deal with the problem of multicollinearity for the distiributed lag models. This estimator outperforms the Almon estimator according to the matrix mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters.  相似文献   

13.
The Bayesian estimation for the parameters of the finite mixture of the Burr type XII distribution with its reciprocal are obtained based on the type-I censored data. The Bayes estimators are computed based on squared error and Linex loss functions and using the idea of Markov chain Monte Carlo algorithm. Based on the Monte Carlo simulation, Bayes estimators are compared with their corresponding maximum-likelihood estimators.  相似文献   

14.
This article develops the Bayesian estimators in the context of reference priors for the two-parameter Frechet distribution. The general forms of the second-order matching priors are also derived in case of any parameter of interest and concluded that the reference prior is also a second order matching prior. Since the Bayesian estimators cannot be obtained in closed form, they are obtained using Monte Carlo simulation and Laplace approximation. The Bayesian and maximum likelihood estimates are compared via simulation study. Two real-life data sets are analyzed for illustration and comparison purpose.  相似文献   

15.
This paper investigates a class of location invariant non-positive moment-type estimators of extreme value index, which is highly flexible due to the tuning parameter involved. Its asymptotic expansions and its optimal sample fraction in terms of minimal asymptotic mean square error are derived. A small scale Monte Carlo simulation turns out that the new estimators, with a suitable choice of the tuning parameter driven by the data itself, perform well compared to the known ones. Finally, the proposed estimators with a bootstrap optimal sample fraction are applied to an environmental data set.  相似文献   

16.
This article is concerned with modifications of both maximum likelihood and moment estimators for parameters of the three-parameter gamma distribution. Modifications employed here are essentially the same as those previously considered by the authors (1980, 1981) in connection with the lognormal distribution. Sampling behavior of the estimates is indicated by a Monte Carlo simulation. For certain combinations of parameter values, these new estimators appear better than both maximum likelihood and moment estimators with respect to bias, variance and/or ease of calculation.  相似文献   

17.
Ridge estimators are usually examined through Monte Carlo simulations since their properties are difficult to obtain analytically. In this paper we argue that a simulation design commonly used in the literature will give biased results of Monte Carlo simulations in favor of ridge regression over ordinary least square estimators. Specifically, it is argued that the properties of ridge estimators that are functions of p distinct regressor eigenvalues should not be evaluated through Monte Carlo designs using only two distinct eigenvalues.  相似文献   

18.
The problem of interval estimation of the stress–strength reliability involving two independent Weibull distributions is considered. An interval estimation procedure based on the generalized variable (GV) approach is given when the shape parameters are unknown and arbitrary. The coverage probabilities of the GV approach are evaluated by Monte Carlo simulation. Simulation studies show that the proposed generalized variable approach is very satisfactory even for small samples. For the case of equal shape parameter, it is shown that the generalized confidence limits are exact. Some available asymptotic methods for the case of equal shape parameter are described and their coverage probabilities are evaluated using Monte Carlo simulation. Simulation studies indicate that no asymptotic approach based on the likelihood method is satisfactory even for large samples. Applicability of the GV approach for censored samples is also discussed. The results are illustrated using an example.  相似文献   

19.
This paper compares minimum distance estimation with best linear unbiased estimation to determine which technique provides the most accurate estimates for location and scale parameters as applied to the three parameter Pareto distribution. Two minimum distance estimators are developed for each of the three distance measures used (Kolmogorov, Cramer‐von Mises, and Anderson‐Darling) resulting in six new estimators. For a given sample size 6 or 18 and shape parameter 1(1)4, the location and scale parameters are estimated. A Monte Carlo technique is used to generate the sample sets. The best linear unbiased estimator and the six minimum distance estimators provide parameter estimates based on each sample set. These estimates are compared using mean square error as the evaluation tool. Results show that the best linear unbaised estimator provided more accurate estimates of location and scale than did the minimum estimators tested.  相似文献   

20.
In this study we compare three estimators of the extreme value index: Pickands estimator, the moment estimator and a maximum likelihood estimator. The estimators are explored both theoretically and by Monte Carlo simulation. We obtain two estimators for large quantiles using Pickands and the maximum likelihood estimators. The latter and one based on the moment estimator are then compared through simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号