首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates two “non-exact” t-type tests, t( k2) and t(k2), of the individual coefficients of a linear regression model, based on two ordinary ridge estimators. The reported results are built on a simulation study covering 84 different models. For models with large standard errors, the ridge-based t-tests have correct levels with considerable gain in powers over those of the least squares t-test, t(0). For models with small standard errors, t(k1) is found to be liberal and is not safe to use while, t(k2) is found to slightly exceed the nominal level in few cases. When tie two ridge tests art: not winners, the results indicate that they don't loose much against t(0).  相似文献   

2.
Partial least squares regression has been widely adopted within some areas as a useful alternative to ordinary least squares regression in the manner of other shrinkage methods such as principal components regression and ridge regression. In this paper we examine the nature of this shrinkage and demonstrate that partial least squares regression exhibits some undesirable properties.  相似文献   

3.
This article considers both Partial Least Squares (PLS) and Ridge Regression (RR) methods to combat multicollinearity problem. A simulation study has been conducted to compare their performances with respect to Ordinary Least Squares (OLS). With varying degrees of multicollinearity, it is found that both, PLS and RR, estimators produce significant reductions in the Mean Square Error (MSE) and Prediction Mean Square Error (PMSE) over OLS. However, from the simulation study it is evident that the RR performs better when the error variance is large and the PLS estimator achieves its best results when the model includes more variables. However, the advantage of the ridge regression method over PLS is that it can provide the 95% confidence interval for the regression coefficients while PLS cannot.  相似文献   

4.
A class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles ( Koenker and Bassett ( 1978 ) ) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means ( see De Jongh et al ( 1988 ) ) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.  相似文献   

5.
This study compares the SPSS ordinary least squares (OLS) regression and ridge regression procedures in dealing with multicollinearity data. The LS regression method is one of the most frequently applied statistical procedures in application. It is well documented that the LS method is extremely unreliable in parameter estimation while the independent variables are dependent (multicollinearity problem). The Ridge Regression procedure deals with the multicollinearity problem by introducing a small bias in the parameter estimation. The application of Ridge Regression involves the selection of a bias parameter and it is not clear if it works better in applications. This study uses a Monte Carlo method to compare the results of OLS procedure with the Ridge Regression procedure in SPSS.  相似文献   

6.
A functional linear regression model linking observations of a functional response variable with measurements of an explanatory functional variable is considered. This model serves to analyse a real data set describing electricity consumption in Sardinia. The interest lies in predicting either oncoming weekends’ or oncoming weekdays’ consumption, provided actual weekdays’ consumption is known. A B-spline estimator of the functional parameter is used. Selected computational issues are addressed as well.  相似文献   

7.
Consider a partially linear regression model with an unknown vector parameter β, an unknown functiong(·), and unknown heteroscedastic error variances. In this paper we develop an asymptotic semiparametric generalized least squares estimation theory under some weak moment conditions. These moment conditions are satisfied by many of the error distributions encountered in practice, and our theory does not require the number of replications to go to infinity.  相似文献   

8.
Consider the linear regression model Y = Xθ+ ε where Y denotes a vector of n observations on the dependent variable, X is a known matrix, θ is a vector of parameters to be estimated and e is a random vector of uncorrelated errors. If X'X is nearly singular, that is if the smallest characteristic root of X'X s small then a small perurbation in the elements of X, such as due to measurement errors, induces considerable variation in the least squares estimate of θ. In this paper we examine for the asymptotic case when n is large the effect of perturbation with regard to the bias and mean squared error of the estimate.  相似文献   

9.
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.  相似文献   

10.
The geometric characterization of linear regression in terms of the ‘concentration ellipse’ by Galton [Galton, F., 1886, Family likeness in stature (with Appendix by Dickson, J.D.H.). Proceedings of the Royal Society of London, 40, 42–73.] and Pearson [Pearson, K., 1901, On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559–572.] was extended to the case of unequal variances of the presumably uncorrelated errors in the experimental data [McCartin, B.J., 2003, A geometric characterization of linear regression. Statistics, 37(2), 101–117.]. In this paper, this geometric characterization is further extended to planar (and also linear) regression in three dimensions where a beautiful interpretation in terms of the concentration ellipsoid is developed.  相似文献   

11.
The regression function R(?) to be estimated is assumed to have an expansion in terms of specified functions, orthogonalized vich respect to values of the explanatory variable. Relative precisions of OBSERVATION are assumed known. The estimate is the posterior linear mean of R(?) given the data. The investigator plots graphs of appropriate functions as an aid in eliciting his prior means and precisions for the coefficients in the expansion. The method is illustrated by an example using simulated data, an example in which effects of various dosages of Vitamin D are estimated, and an example in which a utility function is estimated.  相似文献   

12.
This paper considers the sensitivity of chance constrained linear programming solutions where the coefficients of the left-hand side of a constraint function are estimated from a sample using multiple linear regression. The modified nonlinear constraint provides considerable assurance that the true, but unknown, stochastic linear constraint will be satisfied at a given level of probability for the conditions of the simulation herein. Ordinary least squares and least absolute value regression criteria are considered along with normal, uniform and double exponential distributions of error.  相似文献   

13.
This article is concerned with the parameter estimation in partly linear regression models when the errors are dependent. To overcome the multicollinearity problem, a generalized Liu estimator is proposed. The theoretical properties of the proposed estimator and its relationship with some existing methods designed for partly linear models are investigated. Finally, a hypothetical data is conducted to illustrate some of the theoretical results.  相似文献   

14.
Short-term forecasting of wind generation requires a model of the function for the conversion of meteorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric approach for power curve estimation, for which the model coefficients can be tracked with recursive Least Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the assumption that a noise component is present on the response variable axis only. Therefore, this assumption is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive estimation method is introduced in order to accommodate nonstationarity. This has the additional benefit of lowering the computational costs of updating local coefficients every time new observations become available. The estimation method is based on tracking the left-most eigenvector of the augmented covariance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial datasets (for which the true power curve is available) underline the properties of the proposed regression and related estimation methods. An important result is the significantly higher ability of local polynomial regression with orthogonal fit to accurately approximate the target regression, even though it may hardly be visible when calculating error criteria against corrupted data.  相似文献   

15.
Improvement of the Liu estimator in linear regression model   总被引:2,自引:0,他引:2  
In the presence of stochastic prior information, in addition to the sample, Theil and Goldberger (1961) introduced a Mixed Estimator for the parameter vector β in the standard multiple linear regression model (T,2 I). Recently, the Liu estimator which is an alternative biased estimator for β has been proposed by Liu (1993). In this paper we introduce another new Liu type biased estimator called Stochastic restricted Liu estimator for β, and discuss its efficiency. The necessary and sufficient conditions for mean squared error matrix of the Stochastic restricted Liu estimator to exceed the mean squared error matrix of the mixed estimator will be derived for the two cases in which the parametric restrictions are correct and are not correct. In particular we show that this new biased estimator is superior in the mean squared error matrix sense to both the Mixed estimator and to the biased estimator introduced by Liu (1993).  相似文献   

16.
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined.  相似文献   

17.
In this paper, the notion of the general linear estimator and its modified version are introduced using the singular value decomposition theorem in the linear regression model y=X β+e to improve some classical linear estimators. The optimal selections of the biasing parameters involved are theoretically given under the prediction error sum of squares criterion. A numerical example and a simulation study are finally conducted to illustrate the superiority of the proposed estimators.  相似文献   

18.
It is not always prossible to establish a preference ordering among regression estimators in terms of the generalized mean square error criterion. In the paper, we determine when it is feasible to use this criteion to couduct comparisons among ordinary least squares, principal components, ridge regression, and shrunken least squares estimators.  相似文献   

19.
ABSTRACT

In this paper, shrinkage ridge estimator and its positive part are defined for the regression coefficient vector in a partial linear model. The differencing approach is used to enjoy the ease of parameter estimation after removing the non parametric part of the model. The exact risk expressions in addition to biases are derived for the estimators under study and the region of optimality of each estimator is exactly determined. The performance of the estimators is evaluated by simulated as well as real data sets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号