首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Steffensen inequality is applied to derive quantile bounds for the expectations of generalized order statistics from a distribution belonging to a particular subclass of distributions. The subclass consists of F having the property that F?1(0+)=x0>0 and that x →[1? F(x)]xz is nonincreasing for all x > X0 and some z > 0.  相似文献   

2.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

3.
Data which is grouped and truncated is considered. We are given numbers n1<…<nk=n and we observe Xni ),i=1,…k, and the tottal number of observations available (N> nk is unknown. If the underlying distribution has one unknown parameter θ which enters as a scale parameter, we examine the form of the equations for both conditional, unconditional and modified maximum likelihood estimators of θ and N and examine when these estimators will be finite, and unique. We also develop expressions for asymptotic bias and search for modified estimators which minimize the maximum asymptotic bias. These results are specialized tG the zxponential distribution. Methods of computing the solutions to the likelihood equatims are also discussed.  相似文献   

4.
A sequence {Xn, n≥1} of independent and identically distributed random variables with absolutely continuous (with respect to Lebesque measure) cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max(X1,…,Xj?1), j>1. Let {XL(n), n≥0} with L(o)=1 be the sequence of such record values and Zn,n?1=XL(n)–XL(n?1). Some properties of Zn,n?1 are studied and characterizations of the exponential distribution are discussed in terms of the expectation and the hazard rate of zn,n?1.  相似文献   

5.
This paper is concerned with the estimation of a shift parameter δo, based on some nonnegative functional Hg1 of the pair (DδN(x), f?δN(x)), where DδN(x) = KN/b {F2,n(x)—F1,m (x + δ)}, +δN(x) = {mF1,m (x + δ) + nF2,n(x)}/N, where F1,m and F2,n are the empirical distribution functions of two independent random samples (N = m + n), and where K2N = mn/N. First an estimator δN, is defined as a value of δ minimizing a functional H of the type of H1. A second estimator δ1N is also defined which is a linearized version of the first. Finite and asymptotic properties of these estimators are considered. It is also shown that most well-known test statistics of the Kolmogorov-Smirnov type are particular cases of such functionals H1. The asymptotic distribution and the asymptotic efficiency of some estimators are given.  相似文献   

6.
Let (?,X) be a random vector such that E(X|?) = ? and Var(x|?) a + b? + c?2 for some known constants a, b and c. Assume X1,…,Xn are independent observations which have the same distribution as X. Let t(X) be the linear regression of ? on X. The linear empirical Bayes estimator is used to approximate the linear regression function. It is shown that under appropriate conditions, the linear empirical Bayes estimator approximates the linear regression well in the sense of mean squared error.  相似文献   

7.
The authors consider the problem of estimating the density g of independent and identically distributed variables XI, from a sample Z1,… Zn such that ZI = XI + σ? for i = 1,…, n, and E is noise independent of X, with σ? having a known distribution. They present a model selection procedure allowing one to construct an adaptive estimator of g and to find nonasymptotic risk bounds. The estimator achieves the minimax rate of convergence, in most cases where lower bounds are available. A simulation study gives an illustration of the good practical performance of the method.  相似文献   

8.
For J ? 2 independent groups, the article deals with testing the global hypothesis that all J groups have a common population median or identical quantiles, with an emphasis on the quartiles. Classic rank-based methods are sometimes suggested for comparing medians, but it is well known that under general conditions they do not adequately address this goal. Extant methods based on the usual sample median are unsatisfactory when there are tied values except for the special case J = 2. A variation of the percentile bootstrap used in conjunction with the Harrell–Davis quantile estimator performs well in simulations. The method is illustrated with data from the Well Elderly 2 study.  相似文献   

9.
Accurate methods used to evaluate the inverse of the standard normal cumulative distribution function at probability ρ commonly used today are too cumbersome and/or slow to obtain a large number of evaluations reasonably quickly, e.g., as required in certain Monte Carlo applications. Previously reported simple approximations all have a maximum absolute error εm > 10-4 for a ρ-range of practical concern, such as Min[ρ,l?ρ]≥10?6. An 11-term polynomial-based approximationis presented for which εm > 10-6 in this range.  相似文献   

10.
Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal distribution, if its probability density function (p.d.f.) is given by f(z)=2φ p (z; ξ, Ω)π (z?ξ), z∈? p , where φ p (·; ξ, Ω) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix Ω, ξ∈? p , Ω>0, and π is a skewing function from ? p to ?, that is 0≤π (z)≤1 and π (?z)=1?π (z), ? z∈? p . First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and then investigate conditions for their independence. Finally explicit forms for the above distributions, m.g.f.’s and moments are derived when π (z)=κ (αz), where α∈? p and κ is the normal, Laplace, logistic or uniform distribution function.  相似文献   

11.
An important statistical problem is to construct a confidence set for some functional T(P) of some unknown probability distribution P. Typically, this involves approximating the sampling distribution Jn(P) of some pivot based on a sample of size n from P. A bootstrap procedure is to estimate Jn(P) by Jn(&Pcirc;n), where P?n is the empirical measure based on a sample of size n from P. Typically, one has that Jn(P) and Jn(P?n) are close in an appropriate sense. Two questions are addressed in this note. Are Jn(P) and Jn(P?n) uniformly close as P varies as well? If so, do confidence statements about T(P) possess a corresponding uniformity property? In the case T(P) = P, the answer to the first questions is yes; the answer to the second is no. However, bootstrap confidence statements about T(P) can be made uniform over a restricted, though large, class of P. Similar results apply to other functional T(P).  相似文献   

12.
Let {xij(1 ? j ? ni)|i = 1, 2, …, k} be k independent samples of size nj from respective distributions of functions Fj(x)(1 ? j ? k). A classical statistical problem is to test whether these k samples came from a common distribution function, F(x) whose form may or may not be known. In this paper, we consider the complementary problem of estimating the distribution functions suspected to be homogeneous in order to improve the basic estimator known as “empirical distribution function” (edf), in an asymptotic setup. Accordingly, we consider four additional estimators, namely, the restricted estimator (RE), the preliminary test estimator (PTE), the shrinkage estimator (SE), and the positive rule shrinkage estimator (PRSE) and study their characteristic properties based on the mean squared error (MSE) and relative risk efficiency (RRE) with tables and graphs. We observed that for k ? 4, the positive rule SE performs uniformly better than both shrinkage and the unrestricted estimator, while PTEs works reasonably well for k < 4.  相似文献   

13.
Consider two independent random samples of size f + 1 , one from an N (μ1, σ21) distribution and the other from an N (μ2, σ22) distribution, where σ2122∈ (0, ∞) . The Welch ‘approximate degrees of freedom’ (‘approximate t‐solution’) confidence interval for μ12 is commonly used when it cannot be guaranteed that σ2122= 1 . Kabaila (2005, Comm. Statist. Theory and Methods 34 , 291–302) multiplied the half‐width of this interval by a positive constant so that the resulting interval, denoted by J0, has minimum coverage probability 1 ?α. Now suppose that we have uncertain prior information that σ2122= 1. We consider a broad class of confidence intervals for μ12 with minimum coverage probability 1 ?α. This class includes the interval J0, which we use as the standard against which other members of will be judged. A confidence interval utilizes the prior information substantially better than J0 if (expected length of J)/(expected length of J0) is (a) substantially less than 1 (less than 0.96, say) for σ2122= 1 , and (b) not too much larger than 1 for all other values of σ2122 . For a given f, does there exist a confidence interval that satisfies these conditions? We focus on the question of whether condition (a) can be satisfied. For each given f, we compute a lower bound to the minimum over of (expected length of J)/(expected length of J0) when σ2122= 1 . For 1 ?α= 0.95 , this lower bound is not substantially less than 1. Thus, there does not exist any confidence interval belonging to that utilizes the prior information substantially better than J0.  相似文献   

14.
In this article, we introduce a new method for the volatility function estimation of continuous-time diffusion process dX t  = μ(X t )dt + σ(X t )dW t , which is based on combining the idea of local linear smoother and variable bandwidth. We give the expressions for the conditional MSE and MISE of the estimator and obtain the optimal variable bandwidth. An explicit formula for the optimal variable bandwidth is presented by minimizing the MISE, which extends the related results in Fan and Gijbels (1992 Fan , J. Q. , Gijbels , I. ( 1992 ). Variable bandwidth and local linear regression smoother . Ann. Statist. 20 ( 4 ): 20082036 .[Crossref], [Web of Science ®] [Google Scholar]), etc. Finally, some simulations show that the performance of the proposed estimator with optimal variable bandwidth is often much better than that of the local linear estimator with invariable bandwidth.  相似文献   

15.
In some statistical problems a degree of explicit, prior information is available about the value taken by the parameter of interest, θ say, although the information is much less than would be needed to place a prior density on the parameter's distribution. Often the prior information takes the form of a simple bound, ‘θ > θ1 ’ or ‘θ < θ1 ’, where θ1 is determined by physical considerations or mathematical theory, such as positivity of a variance. A conventional approach to accommodating the requirement that θ > θ1 is to replace an estimator, , of θ by the maximum of and θ1. However, this technique is generally inadequate. For one thing, it does not respect the strictness of the inequality θ > θ1 , which can be critical in interpreting results. For another, it produces an estimator that does not respond in a natural way to perturbations of the data. In this paper we suggest an alternative approach, in which bootstrap aggregation, or bagging, is used to overcome these difficulties. Bagging gives estimators that, when subjected to the constraint θ > θ1 , strictly exceed θ1 except in extreme settings in which the empirical evidence strongly contradicts the constraint. Bagging also reduces estimator variability in the important case for which is close to θ1, and more generally produces estimators that respect the constraint in a smooth, realistic fashion.  相似文献   

16.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

17.
Let F p×phave a multivariate F distribution with a scale p×p matrix Δ and degrees of freedom k1 and k2 such that ki - p - 1 > 0, i = 1,2. The estimation of Δ under entropy and squared error loss functions are considered. In both cases a new class of orthogonally invariant estimators are obtained which dominate the best unbiased estimator.  相似文献   

18.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

19.
ABSTRACT

In this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study.  相似文献   

20.
This paper deals with sparse K2×J(J>2)K2×J(J>2) tables. Projection-method Mantel–Haenszel (MH) estimators of the common odds ratios have been proposed for K2×JK2×J tables, which include Greenland's generalized MH estimator as a special case. The method projects log-transformed MH estimators for all K2×2K2×2 subtables, which were called naive MH estimators, onto a linear space spanned by log odds ratios. However, for sparse tables it is often the case that naive MH estimators are unable to be computed. In this paper we introduce alternative naive MH estimators using a graph that represents K2×JK2×J tables, and apply the projection to these alternative estimators. The idea leads to infinitely many reasonable estimators and we propose a method to choose the optimal one by solving a quadratic optimization problem induced by the graph, where some graph-theoretic arguments play important roles to simplify the optimization problem. An illustration is given using data from a case–control study. A simulation study is also conducted, which indicates that the MH estimator tends to have a smaller mean squared error than the MH estimator previously suggested and the conditional maximum likelihood estimator for sparse tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号