首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, we generalize the controlled calibration model by assuming replication on both variables. Likelihood-based methodology is used to estimate the model parameters and the Fisher information matrix is used to construct confidence intervals for the unknown value of the regressor variable. Further, we study the local influence diagnostic method which is based on the conditional expectation of the complete-data log-likelihood function related to the EM algorithm. Some useful perturbation schemes are discussed. A simulation study is carried out to assess the effect of the measurement error on the estimation of the parameter of interest. This new approach is illustrated with a real data set.  相似文献   

2.
The purpose of the paper, is to explain how recent advances in Markov Chain Monte Carlo integration can facilitate the routine Bayesian analysis of the linear model when the prior distribution is completely user dependent. The method is based on a Metropolis-Hastings algorithm with a Student-t source distribution that can generate posterior moments as well as marginal posterior densities for model parameters. The method is illustrated with numerical examples where the combination of prior and likelihood information leads to multimodal posteriors due to prior-likelihood conflicts, and to cases where prior information can be summarized by symmetric stable Paretian distributions.  相似文献   

3.
In presence of interval-censored data, we propose a general three-state disease model with covariates. Such data can arise, for example, in epidemiologic studies of infectious disease where both the times of infection and disease onset are not directly observed, or in cancer studies where the time of disease metastasis is known up to a specified interval. The proposed model allows the distributions of the transition times between states to depend on covariates and the time in the previous state. An estimation procedure for the underlying distributions and the model coefficients is suggested with the EM algorithm. The EMS algorithm (Smoothed EM algorithm) is also considered to obtain smooth estimates of the distributions. The proposed method is illustrated with data from an AIDS study and a study of patients with malignant melanoma.  相似文献   

4.
The purpose of this work is, on the one hand, to study how to forecast road trafficking on highway networks and, on the other hand, to describe future traffic events. Here, road trafficking is measured by vehicle velocities. The authors propose two methodologies. The first is based on an empirical classification method, and the second on a probability mixture model. They use an SAEM‐type algorithm (a stochastic approximation of the EM algorithm) to select the densities of the mixture model. Then, they test the validity of their methodologies by forecasting short term travel times.  相似文献   

5.
We postulate a dynamic spatio-temporal model with constant covariate effect but with varying spatial effect over time and varying temporal effect across locations. To mitigate the effect of temporary structural change, the model can be estimated using the backfitting algorithm embedded with forward search algorithm and bootstrap. A simulation study is designed to evaluate structural optimality of the model with the estimation procedure. The fitted model exhibit superior predictive ability relative to the linear model. The proposed algorithm also consistently produced lower relative bias and standard errors for the spatial parameter estimates. While additional neighbourhoods do not necessarily improve predictive ability of the model, it trims down relative bias on the parameter estimates, specially for spatial parameter. Location of the temporary structural change along with the degree of structural change contributes to lower relative bias of parameter estimates and in better predictive ability of the model. The estimation procedure is able to produce parameter estimates that are robust to the occurrence of temporary structural change.  相似文献   

6.
Abstract

In this paper we introduce continuous tree mixture model that is the mixture of undirected graphical models with tree structured graphs and is considered as multivariate analysis with a non parametric approach. We estimate its parameters, the component edge sets and mixture proportions through regularized maximum likalihood procedure. Our new algorithm, which uses expectation maximization algorithm and the modified version of Kruskal algorithm, simultaneosly estimates and prunes the mixture component trees. Simulation studies indicate this method performs better than the alternative Gaussian graphical mixture model. The proposed method is also applied to water-level data set and is compared with the results of Gaussian mixture model.  相似文献   

7.
We consider an extension of the recursive bivariate probit model for estimating the effect of a binary variable on a binary outcome in the presence of unobserved confounders, nonlinear covariate effects and overdispersion. Specifically, the model consists of a system of two binary outcomes with a binary endogenous regressor which includes smooth functions of covariates, hence allowing for flexible functional dependence of the responses on the continuous regressors, and arbitrary random intercepts to deal with overdispersion arising from correlated observations on clusters or from the omission of non‐confounding covariates. We fit the model by maximizing a penalized likelihood using an Expectation‐Maximisation algorithm. The issues of automatic multiple smoothing parameter selection and inference are also addressed. The empirical properties of the proposed algorithm are examined in a simulation study. The method is then illustrated using data from a survey on health, aging and wealth.  相似文献   

8.
A spatiotemporal model is postulated and estimated using a procedure that infuses the forward search algorithm and maximum likelihood estimation into the backfitting framework. The forward search algorithm filters the effect of temporary structural change in the estimation of covariate and spatial parameters. Simulation studies illustrate capability of the method in producing robust estimates of the parameters even in the presence of structural change. The method provides good model fit even for small sample sizes in short time series data and good predictions for a wide range of lengths of contamination periods and levels of severity of contamination.  相似文献   

9.
The B-spline representation is a common tool to improve the fitting of smooth nonlinear functions, it offers a fitting as a piecewise polynomial. The regions that define the pieces are separated by a sequence of knots. The main difficulty in this type of modeling is the choice of the number and the locations of these knots. The Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm provides a solution to simultaneously select these two parameters by considering the knots as free parameters. This algorithm belongs to the MCMC techniques that allow simulations from target distributions on spaces of varying dimension. The aim of the present investigation is to use this algorithm in the framework of the analysis of survival time, for the Cox model in particular. In fact, the relation between the hazard ratio function and the covariates being assumed to be log-linear, this assumption is too restrictive. Thus, we propose to use the RJMCMC algorithm to model the log hazard ratio function by a B-spline representation with an unknown number of knots at unknown locations. This method is illustrated with two real data sets: the Stanford heart transplant data and lung cancer survival data. Another application of the RJMCMC is selecting the significant covariates, and a simulation study is performed.  相似文献   

10.
Abstract.  In this paper, we propose a random varying-coefficient model for longitudinal data. This model is different from the standard varying-coefficient model in the sense that the time-varying coefficients are assumed to be subject-specific, and can be considered as realizations of stochastic processes. This modelling strategy allows us to employ powerful mixed-effects modelling techniques to efficiently incorporate the within-subject and between-subject variations in the estimators of time-varying coefficients. Thus, the subject-specific feature of longitudinal data is effectively considered in the proposed model. A backfitting algorithm is proposed to estimate the coefficient functions. Simulation studies show that the proposed estimation methods are more efficient in finite-sample performance compared with the standard local least squares method. An application to an AIDS clinical study is presented to illustrate the proposed methodologies.  相似文献   

11.
This article studies computation problem in the context of estimating parameters of linear mixed model for massive data. Our algorithms combine the factored spectrally transformed linear mixed model method with a sequential singular value decomposition calculation algorithm. This combination solves the operation limitation of the method and also makes this algorithm feasible to big dataset, especially when the data has a tall and thin design matrix. Our simulation studies show that our algorithms make the calculation of linear mixed model feasible for massive data on ordinary desktop and have same estimating accuracy with the method based on the whole data.  相似文献   

12.
13.
In this paper, we consider two well-known parametric long-term survival models, namely, the Bernoulli cure rate model and the promotion time (or Poisson) cure rate model. Assuming the long-term survival probability to depend on a set of risk factors, the main contribution is in the development of the stochastic expectation maximization (SEM) algorithm to determine the maximum likelihood estimates of the model parameters. We carry out a detailed simulation study to demonstrate the performance of the proposed SEM algorithm. For this purpose, we assume the lifetimes due to each competing cause to follow a two-parameter generalized exponential distribution. We also compare the results obtained from the SEM algorithm with those obtained from the well-known expectation maximization (EM) algorithm. Furthermore, we investigate a simplified estimation procedure for both SEM and EM algorithms that allow the objective function to be maximized to split into simpler functions with lower dimensions with respect to model parameters. Moreover, we present examples where the EM algorithm fails to converge but the SEM algorithm still works. For illustrative purposes, we analyze a breast cancer survival data. Finally, we use a graphical method to assess the goodness-of-fit of the model with generalized exponential lifetimes.  相似文献   

14.
In this paper a semi-parametric approach is developed to model non-linear relationships in time series data using polynomial splines. Polynomial splines require very little assumption about the functional form of the underlying relationship, so they are very flexible and can be used to model highly non-linear relationships. Polynomial splines are also computationally very efficient. The serial correlation in the data is accounted for by modelling the noise as an autoregressive integrated moving average (ARIMA) process, by doing so, the efficiency in nonparametric estimation is improved and correct inferences can be obtained. The explicit structure of the ARIMA model allows the correlation information to be used to improve forecasting performance. An algorithm is developed to automatically select and estimate the polynomial spline model and the ARIMA model through backfitting. This method is applied on a real-life data set to forecast hourly electricity usage. The non-linear effect of temperature on hourly electricity usage is allowed to be different at different hours of the day and days of the week. The forecasting performance of the developed method is evaluated in post-sample forecasting and compared with several well-accepted models. The results show the performance of the proposed model is comparable with a long short-term memory deep learning model.  相似文献   

15.
Linear mixed models are regularly applied to animal and plant breeding data to evaluate genetic potential. Residual maximum likelihood (REML) is the preferred method for estimating variance parameters associated with this type of model. Typically an iterative algorithm is required for the estimation of variance parameters. Two algorithms which can be used for this purpose are the expectation‐maximisation (EM) algorithm and the parameter expanded EM (PX‐EM) algorithm. Both, particularly the EM algorithm, can be slow to converge when compared to a Newton‐Raphson type scheme such as the average information (AI) algorithm. The EM and PX‐EM algorithms require specification of the complete data, including the incomplete and missing data. We consider a new incomplete data specification based on a conditional derivation of REML. We illustrate the use of the resulting new algorithm through two examples: a sire model for lamb weight data and a balanced incomplete block soybean variety trial. In the cases where the AI algorithm failed, a REML PX‐EM based on the new incomplete data specification converged in 28% to 30% fewer iterations than the alternative REML PX‐EM specification. For the soybean example a REML EM algorithm using the new specification converged in fewer iterations than the current standard specification of a REML PX‐EM algorithm. The new specification integrates linear mixed models, Henderson's mixed model equations, REML and the REML EM algorithm into a cohesive framework.  相似文献   

16.
The topic of heterogeneity in the analysis of recurrent event data has received considerable attention recent times. Frailty models are widely employed in such situations as they allow us to model the heterogeneity through common random effect. In this paper, we introduce a shared frailty model for gap time distributions of recurrent events with multiple causes. The parameters of the model are estimated using EM algorithm. An extensive simulation study is used to assess the performance of the method. Finally, we apply the proposed model to a real-life data.  相似文献   

17.
The EM algorithm is often used for finding the maximum likelihood estimates in generalized linear models with incomplete data. In this article, the author presents a robust method in the framework of the maximum likelihood estimation for fitting generalized linear models when nonignorable covariates are missing. His robust approach is useful for downweighting any influential observations when estimating the model parameters. To avoid computational problems involving irreducibly high‐dimensional integrals, he adopts a Metropolis‐Hastings algorithm based on a Markov chain sampling method. He carries out simulations to investigate the behaviour of the robust estimates in the presence of outliers and missing covariates; furthermore, he compares these estimates to the classical maximum likelihood estimates. Finally, he illustrates his approach using data on the occurrence of delirium in patients operated on for abdominal aortic aneurysm.  相似文献   

18.
We postulate a spatiotemporal multilevel model and estimate using forward search algorithm and MLE imbedded into the backfitting algorithm. Forward search algorithm ensures robustness of the estimates by filtering the effect of temporary structural changes in the estimation of the group-level covariates, the individual-level covariates and spatial parameters. Backfitting algorithm provides computational efficiency of estimation procedure assuming an additive model. Simulation studies show that estimates are robust even in the presence of structural changes induced for example by epidemic outbreak. The model also produced robust estimates even for small sample and short time series common in epidemiological settings.  相似文献   

19.
Independent censoring is commonly assumed in survival analysis. However, it may be questionable when censoring is related to event time. We model the event and censoring time marginally through accelerated failure time models, and model their association by a known copula. An iteration algorithm is proposed to estimate the regression parameters. Simulation results show the improvement of the proposed method compared to the naive method under independent censoring. Sensitivity analysis gives the evidences that the proposed method can obtain reasonable estimates even when the forms of copula are misspecified. We illustrate its application by analyzing prostate cancer data.  相似文献   

20.
Diagnostic techniques are proposed for assessing the influence of individual cases on confidence intervals in nonlinear regression. The technique proposed uses the method of profile t-plots applied to the case-deletion model. The effect of the geometry of the statistical model on the influence measures is assessed, and an algorithm for computing case-deleted confidence intervals is described. This algorithm provides a direct method for constructing a simple diagnostic measure based on the ratio of the lengths of confidence intervals. The generalization of these methods to multiresponse models is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号