首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.  相似文献   

2.
Since the pioneering work by Koenker and Bassett [27], quantile regression models and its applications have become increasingly popular and important for research in many areas. In this paper, a random effects ordinal quantile regression model is proposed for analysis of longitudinal data with ordinal outcome of interest. An efficient Gibbs sampling algorithm was derived for fitting the model to the data based on a location-scale mixture representation of the skewed double-exponential distribution. The proposed approach is illustrated using simulated data and a real data example. This is the first work to discuss quantile regression for analysis of longitudinal data with ordinal outcome.  相似文献   

3.
We extend the Bayesian Model Averaging (BMA) framework to dynamic panel data models with endogenous regressors using a Limited Information Bayesian Model Averaging (LIBMA) methodology. Monte Carlo simulations confirm the asymptotic performance of our methodology both in BMA and selection, with high posterior inclusion probabilities for all relevant regressors, and parameter estimates very close to their true values. In addition, we illustrate the use of LIBMA by estimating a dynamic gravity model for bilateral trade. Once model uncertainty, dynamics, and endogeneity are accounted for, we find several factors that are robustly correlated with bilateral trade. We also find that applying methodologies that do not account for either dynamics or endogeneity (or both) results in different sets of robust determinants.  相似文献   

4.
Many credit risk models are based on the selection of a single logistic regression model, on which to base parameter estimation. When many competing models are available, and without enough guidance from economical theory, model averaging represents an appealing alternative to the selection of single models. Despite model averaging approaches have been present in statistics for many years, only recently they are starting to receive attention in economics and finance applications. This contribution shows how Bayesian model averaging can be applied to credit risk estimation, a research area that has received a great deal of attention recently, especially in the light of the global financial crisis of the last few years and the correlated attempts to regulate international finance. The paper considers the use of logistic regression models under the Bayesian Model Averaging paradigm. We argue that Bayesian model averaging is not only more correct from a theoretical viewpoint, but also slightly superior, in terms of predictive performance, with respect to single selected models.  相似文献   

5.
Data with censored initiating and terminating times arises quite frequently in acquired immunodeficiency syndrome (AIDS) epidemiologic studies. Analysis of such data involves a complicated bivariate likelihood, which is difficult to deal with computationally. Bayesian analysis, op the other hand, presents added complexities that have yet to be resolved. By exploiting the simple form of a complete data likelihood and utilizing the power of a Markov Chain Monte Carlo (MCMC) algorithm, this paper presents a methodology for fitting Bayesian regression models to such data. The proposed methods extend the work of Sinha (1997), who considered non-parametric Bayesian analysis of this type of data. The methodology is illustiated with an application to a cohort of HIV infected hemophiliac patients.  相似文献   

6.
We present a Bayesian analysis of a piecewise linear model constructed by using basis functions which generalizes the univariate linear spline to higher dimensions. Prior distributions are adopted on both the number and the locations of the splines, which leads to a model averaging approach to prediction with predictive distributions that take into account model uncertainty. Conditioning on the data produces a Bayes local linear model with distributions on both predictions and local linear parameters. The method is spatially adaptive and covariate selection is achieved by using splines of lower dimension than the data.  相似文献   

7.
We develop Bayesian procedures to make inference about parameters of a statistical design with autocorrelated error terms. Modelling treatment effects can be complex in the presence of other factors such as time; for example in longitudinal data. In this paper, Markov chain Monte Carlo methods (MCMC), the Metropolis-Hastings algorithm and Gibbs sampler are used to facilitate the Bayesian analysis of real life data when the error structure can be expressed as an autoregressive model of order p. We illustrate our analysis with real data.  相似文献   

8.
In this paper, we consider the non-penalty shrinkage estimation method of random effect models with autoregressive errors for longitudinal data when there are many covariates and some of them may not be active for the response variable. In observational studies, subjects are followed over equally or unequally spaced visits to determine the continuous response and whether the response is associated with the risk factors/covariates. Measurements from the same subject are usually more similar to each other and thus are correlated with each other but not with observations of other subjects. To analyse this data, we consider a linear model that contains both random effects across subjects and within-subject errors that follows autoregressive structure of order 1 (AR(1)). Considering the subject-specific random effect as a nuisance parameter, we use two competing models, one includes all the covariates and the other restricts the coefficients based on the auxiliary information. We consider the non-penalty shrinkage estimation strategy that shrinks the unrestricted estimator in the direction of the restricted estimator. We discuss the asymptotic properties of the shrinkage estimators using the notion of asymptotic biases and risks. A Monte Carlo simulation study is conducted to examine the relative performance of the shrinkage estimators with the unrestricted estimator when the shrinkage dimension exceeds two. We also numerically compare the performance of the shrinkage estimators to that of the LASSO estimator. A longitudinal CD4 cell count data set will be used to illustrate the usefulness of shrinkage and LASSO estimators.  相似文献   

9.
Abstract

In this paper, we propose a variable selection method for quantile regression model in ultra-high dimensional longitudinal data called as the weighted adaptive robust lasso (WAR-Lasso) which is double-robustness. We derive the consistency and the model selection oracle property of WAR-Lasso. Simulation studies show the double-robustness of WAR-Lasso in both cases of heavy-tailed distribution of the errors and the heavy contaminations of the covariates. WAR-Lasso outperform other methods such as SCAD and etc. A real data analysis is carried out. It shows that WAR-Lasso tends to select fewer variables and the estimated coefficients are in line with economic significance.  相似文献   

10.
Abstract

Augmented mixed beta regression models are suitable choices for modeling continuous response variables on the closed interval [0, 1]. The random eeceeects in these models are typically assumed to be normally distributed, but this assumption is frequently violated in some applied studies. In this paper, an augmented mixed beta regression model with skew-normal independent distribution for random effects are used. Next, we adopt a Bayesian approach for parameter estimation using the MCMC algorithm. The methods are then evaluated using some intensive simulation studies. Finally, the proposed models have applied to analyze a dataset from an Iranian Labor Force Survey.  相似文献   

11.
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance with the more common maximum likelihood-based model selection for simulated and real market data. All five MCMC methods proved reliable in the simulation study, although differing in their computational demands. Results on simulated data also show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favor of the true model than maximum likelihood. Results on market data show the instability of the harmonic mean estimator and reliability of the advanced model selection methods.  相似文献   

12.
Shen  Junshan  Yu  Hanjun  Yang  Jin  Liu  Chunling 《Statistics and Computing》2019,29(3):571-583
Statistics and Computing - This paper studies Bayesian inference on longitudinal mixed effects models with non-normal AR(1) errors. We model the nonparametric zero-mean noise in the autoregression...  相似文献   

13.
Xing-Cai Zhou 《Statistics》2013,47(3):521-534
An inherent characteristic of longitudinal data is the dependence among the observations within the same subject. For exhibiting dependencies among the observations within the same subject, this paper considers a semiparametric partially linear regression model for longitudinal data based on martingale difference error's structure. We establish a strong consistency for the least squares estimator of a parametric component and the estimator of a non-parametric function under some mild conditions. A simulation study shows the performance of the proposed estimator in finite samples.  相似文献   

14.
In this paper, we focus on the variable selection for the semiparametric regression model with longitudinal data when some covariates are measured with errors. A new bias-corrected variable selection procedure is proposed based on the combination of the quadratic inference functions and shrinkage estimations. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure with an application.  相似文献   

15.
Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption.  相似文献   

16.
As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student-t, Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student-t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR. The newly developed procedures are illustrated with applications using real and simulated data.  相似文献   

17.
Motivated by the Singapore Longitudinal Aging Study (SLAS), we propose a Bayesian approach for the estimation of semiparametric varying-coefficient models for longitudinal continuous and cross-sectional binary responses. These models have proved to be more flexible than simple parametric regression models. Our development is a new contribution towards their Bayesian solution, which eases computational complexity. We also consider adapting all kinds of familiar statistical strategies to address the missing data issue in the SLAS. Our simulation results indicate that a Bayesian imputation (BI) approach performs better than complete-case (CC) and available-case (AC) approaches, especially under small sample designs, and may provide more useful results in practice. In the real data analysis for the SLAS, the results for longitudinal outcomes from BI are similar to AC analysis, differing from those with CC analysis.  相似文献   

18.
Identification of different gene expressions of chickpea (Cicer arietinum) plant tissue is needed in order to develop new varieties of chickpea plant which is resistant to disease through the insertion of genes. This plant is the third legume plant of the Leguminosae (Fabaceae) family and is much needed in the world due to its high-protein seeds and roots that contain symbiotic nitrogen-fixing bacteria. This paper has succeeded to demonstrate the work of Bayesian mixture model averaging (BMMA) approach to identify the different gene expressions of chickpea plant tissue in Indonesia. The results show that the best BMMA normal models contain from 727 (73%) up to 939 (94%) models from 1,000 generated mixture normal models. The fitted BMMA models to gene expression differences data on average is 0.2878511 for Kolmogorov–Smirnov (KS) and 0.1278080 for continuous rank probability score (CRPS). Based on these BMMA models, there are three groups of gene IDs: downregulated, regulated, and upregulated. The results of this grouping can be useful to find new varieties of chickpea plants that are more resistant to disease. The BMMA normal models coupled with Occam's window as a data-driven modeling have succeed to demonstrate the work of building the gene expression differences microarray experiments data.  相似文献   

19.
Family studies are often conducted to examine the existence of familial aggregation. Particularly, twin studies can model separately the genetic and environmental contribution. Here we estimate the heritability of quantitative traits via variance components of random-effects in linear mixed models (LMMs). The motivating example was a myopia twin study containing complex nesting data structures: twins and siblings in the same family and observations on both eyes for each individual. Three models are considered for this nesting structure. Our proposal takes into account the model uncertainty in both covariates and model structures via an extended Bayesian model averaging (EBMA) procedure. We estimate the heritability using EBMA under three suggested model structures. When compared with the results under the model with the highest posterior model probability, the EBMA estimate has smaller variation and is slightly conservative. Simulation studies are conducted to evaluate the performance of variance-components estimates, as well as the selections of risk factors, under the correct or incorrect structure. The results indicate that EBMA, with consideration of uncertainties in both covariates and model structures, is robust in model misspecification than the usual Bayesian model averaging (BMA) that considers only uncertainty in covariates selection.  相似文献   

20.
Just as frequentist hypothesis tests have been developed to check model assumptions, prior predictive p-values and other Bayesian p-values check prior distributions as well as other model assumptions. These model checks not only suffer from the usual threshold dependence of p-values, but also from the suppression of model uncertainty in subsequent inference. One solution is to transform Bayesian and frequentist p-values for model assessment into a fiducial distribution across the models. Averaging the Bayesian or frequentist posterior distributions with respect to the fiducial distribution can reproduce results from Bayesian model averaging or classical fiducial inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号