首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Exact nonparametric inference based on ordinary Type-II right censored samples has been extended here to the situation when there are multiple samples with Type-II censoring from a common continuous distribution. It is shown that marginally, the order statistics from the pooled sample are mixtures of the usual order statistics with multivariate hypergeometric weights. Relevant formulas are then derived for the construction of nonparametric confidence intervals for population quantiles, prediction intervals, and tolerance intervals in terms of these pooled order statistics. It is also shown that this pooled-sample approach assists in achieving higher confidence levels when estimating large quantiles as compared to a single Type-II censored sample with same number of observations from a sample of comparable size. We also present some examples to illustrate all the methods of inference developed here.  相似文献   

2.
Multi-sample inference for simple-tree alternatives with ranked-set samples   总被引:1,自引:0,他引:1  
This paper develops a non‐parametric multi‐sample inference for simple‐tree alternatives for ranked‐set samples. The multi‐sample inference provides simultaneous one‐sample sign confidence intervals for the population medians. The decision rule compares these intervals to achieve the desired type I error. For the specified upper bounds on the experiment‐wise error rates, corresponding individual confidence coefficients are presented. It is shown that the testing procedure is distribution‐free. To achieve the desired confidence coefficients for multi‐sample inference, a nonparametric confidence interval is constructed by interpolating the adjacent order statistics. Interpolation coefficients and coverage probabilities are provided, along with the nominal levels.  相似文献   

3.
Abstract.  This article extends recent results [Scand. J. Statist. 28 (2001) 699] about exact non-parametric inferences based on order statistics with progressive type-II censoring. The extension lies in that non-parametric inferences are now covered where the dependence between involved order statistics cannot be circumvented. These inferences include: (a) tolerance intervals containing at least a specified proportion of the parent distribution, (b) prediction intervals containing at least a specified number of observations in a future sample, and (c) outer and/or inner confidence intervals for a quantile interval of the parent distribution. The inferences are valid for any parent distribution with continuous distribution function. The key result shows how the probability of an event involving k dependent order statistics that are observable/uncensored with progressive type-II censoring can be represented as a mixture with known weights of corresponding probabilities involving k dependent ordinary order statistics. Further applications/developments concerning exact Kolmogorov-type confidence regions are indicated.  相似文献   

4.
For a sample from a given distribution the difference of two order statistics and the Studentized quantile are statistics whose distribution is needed to obtain tests and confidence intervals for quantiles and quantile differences. This paper gives saddlepoint approximations for densities and saddlepoint approximations of the Lugannani–Rice form for tail probabilities of these statistics. The relative errors of the approximations are n −1 uniformly in a neighbourhood of the parameters and this uniformity is global if the densities are log-concave.  相似文献   

5.
Several procedures have been proposed for testing the hypothesis that all off-diagonal elements of the correlation matrix of a multivariate normal distribution are equal. If the hypothesis of equal correlation can be accepted, it is then of interest to estimate and perhaps test hypotheses for the common correlation. In this paper, two versions of five different test statistics are compared via simulation in terms of adequacy of the normal approximation, coverage probabilities of confidence intervals, control of Type I error, and power. The results indicate that two test statistics based on the average of the Fisher z-transforms of the sample correlations should be used in most cases. A statistic based on the sample eigenvalues also gives reasonable results for confidence intervals and lower-tailed tests.  相似文献   

6.
In this paper, we propose new asymptotic confidence intervals for extreme quantiles, that is, for quantiles located outside the range of the available data. We restrict ourselves to the situation where the underlying distribution is heavy-tailed. While asymptotic confidence intervals are mostly constructed around a pivotal quantity, we consider here an alternative approach based on the distribution of order statistics sampled from a uniform distribution. The convergence of the coverage probability to the nominal one is established under a classical second-order condition. The finite sample behavior is also examined and our methodology is applied to a real dataset.  相似文献   

7.
Prediction of censored order statistics from a Type-II censored sample can be done with trivial bounds having perfect confidence. However, given independent samples from the same absolutely continuous distribution, improved bounds can be attained. In this regard, we develop here point prediction based on L-statistics for predicting order statistics (OS) from a future sample as well as for predicting censored OS from a Type-II censored sample. An example is taken to illustrate these ideas, and the limiting case wherein a single independent sample is arbitrarily large is also discussed.  相似文献   

8.
When estimating population quantiles via a random sample from an unknown continuous distribution function it is well known that a pair of order statistics may be used to set a confidence interval for any single desired, population quantile. In this paper the technique is generalized so that more than one pair of order statistics may be used to obtain simultaneous confidence intervals for the various quantiles that might be required. The generalization immediately extends to the problem of obtaining interval estimates for quantile intervals. Distributions of the ordered and unordered probability coverages of these confidence intervals are discussed as are the associated distributions of linear combinations of the coverages.  相似文献   

9.
10.
It is shown how various exact non-parametric inferences based on order statistics in one or two random samples can be generalized to situations with progressive type-II censoring, which is a kind of evolutionary right censoring. Ordinary type-II right censoring is a special case of such progressive censoring. These inferences include confidence intervals for a given parent quantile, prediction intervals for a given order statistic of a future sample, and related two-sample inferences based on exceedance probabilities. The proposed inferences are valid for any parent distribution with continuous distribution function. The key result is that each observable uncensored order statistic that becomes available with progressive type-II censoring can be represented as a mixture with known weights of underlying ordinary order statistics. The importance of this mixture representation lies in that various properties of such observable order statistics can be deduced immediately from well-known properties of ordinary order statistics.  相似文献   

11.
The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented.  相似文献   

12.
This article is concerned with partially non linear models when the response variables are missing at random. We examine the empirical likelihood (EL) ratio statistics for unknown parameter in non linear function based on complete-case data, semiparametric regression imputation, and bias-corrected imputation. All the proposed statistics are proven to be asymptotically chi-square distribution under some suitable conditions. Simulation experiments are conducted to compare the finite sample behaviors of the proposed approaches in terms of confidence intervals. It showed that the EL method has advantage compared to the conventional method, and moreover, the imputation technique performs better than the complete-case data.  相似文献   

13.
In the linear regression model, the asymptotic distributions of certain functions of confidence bounds of a class of confidence intervals for the regression parameter arc investigated. The class of confidence intervals we consider in this paper are based on the usual linear rank statistics (signed as well as unsigned). Under suitable assumptions, if the confidence intervals are based on the signed linear rank statistics, it is established that the lengths, properly normalized, of the confidence intervals converge in law to the standard normal distributions; if the confidence intervals arc based on the unsigned linear rank statistics, it is then proved that a linear function of the confidence bounds converges in law to a normal distribution.  相似文献   

14.
Generally, confidence regions for the probabilities of a multinomial population are constructed based on the Pearson χ2 statistic. Morales et al. (Bootstrap confidence regions in multinomial sampling. Appl Math Comput. 2004;155:295–315) considered the bootstrap and asymptotic confidence regions based on a broader family of test statistics known as power-divergence test statistics. In this study, we extend their work and propose penalized power-divergence test statistics-based confidence regions. We only consider small sample sizes where asymptotic properties fail and alternative methods are needed. Both bootstrap and asymptotic confidence regions are constructed. We consider the percentile and the bias corrected and accelerated bootstrap confidence regions. The latter confidence region has not been studied previously for the power-divergence statistics much less for the penalized ones. Designed simulation studies are carried out to calculate average coverage probabilities. Mean absolute deviation between actual and nominal coverage probabilities is used to compare the proposed confidence regions.  相似文献   

15.
In this paper we consider conditional inference procedures for the Pareto and power function distributions. We develop procedures for obtaining confidence intervals for the location and scale parameters as well as upper and lower n probability tolerance intervals for a proportion g, given a Type-II right censored sample from the corresponding distribution. The intervals are exact, and are obtained by conditioning on the observed values of the ancillary statistics. Since, for each distribution, the procedures assume that a shape parameter x is known, a sensitivity analysis is also carried out to see how the procedures are affected by changes in x.  相似文献   

16.
叶光 《统计研究》2011,28(3):99-106
 针对完全修正最小二乘(full-modified ordinary least square,简称FMOLS)估计方法,给出一种协整参数的自举推断程序,证明零假设下自举统计量与检验统计量具有相同的渐近分布。关于检验功效的研究表明,虽然有约束自举的实际检验水平表现良好,但如果零假设不成立,自举统计量的分布是不确定的,因而其经验分布不能作为检验统计量精确分布的有效估计。实际应用中建议使用无约束自举,因为无论观测数据是否满足零假设,其自举统计量与零假设下检验统计量都具有相同的渐近分布。最后,利用蒙特卡洛模拟对自举推断和渐近推断的有限样本表现进行比较研究。  相似文献   

17.
Estimators for quantiles based on linear combinations of order statistics have been proposed by Harrell and Davis(1982) and kaigh and Lachenbruch (1982). Both estimators have been demonstrated to be at least as efficient for small sample point estimation as an ordinary sample quantile estimator based on one or two order statistics: Distribution-free confidence intervals for quantiles can be constructed using either of the two approaches. By means of a simulation study, these confidence intervals have been compared with several other methods of constructing confidence intervals for quantiles in small samples. For the median, the Kaigh and Lachenbruch method performed fairly well. For other quantiles, no method performed better than the method which uses pairs of order statistics.  相似文献   

18.
ABSTRACT

Regression analysis is one of the important tools in statistics to investigate the relationships among variables. When the sample size is small, however, the assumptions for regression analysis can be violated. This research focuses on using the exact bootstrap to construct confidence intervals for regression parameters in small samples. The comparison of the exact bootstrap method with the basic bootstrap method was carried out by a simulation study. It was found that on a very small sample (n ≈ 5) under Laplace distribution with the independent variable treated as random, the exact bootstrap was more effective than the standard bootstrap confidence interval.  相似文献   

19.
The negative binomial distribution offers an alternative view to the binomial distribution for modeling count data. This alternative view is particularly useful when the probability of success is very small, because, unlike the fixed sampling scheme of the binomial distribution, the inverse sampling approach allows one to collect enough data in order to adequately estimate the proportion of success. However, despite work that has been done on the joint estimation of two binomial proportions from independent samples, there is little, if any, similar work for negative binomial proportions. In this paper, we construct and investigate three confidence regions for two negative binomial proportions based on three statistics: the Wald (W), score (S) and likelihood ratio (LR) statistics. For large-to-moderate sample sizes, this paper finds that all three regions have good coverage properties, with comparable average areas for large sample sizes but with the S method producing the smaller regions for moderate sample sizes. In the small sample case, the LR method has good coverage properties, but often at the expense of comparatively larger areas. Finally, we apply these three regions to some real data for the joint estimation of liver damage rates in patients taking one of two drugs.  相似文献   

20.
This paper gives the likelihood function for a Type I censored sample from the geometric distribution with parameter p, and the maximum likelihood estimator for p. Exact and asymptotic sampling distributions of joint sufficient statistics for p are derived. Such distributional results make it possible to develop tests or confidence intervals based on discrete censored data, which are not available now in the literature. Neyman-Pearson tests for p are developed. Examples are given to illustrate these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号