首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem of selecting a population according to “selection and ranking” is an important statistical problem. The ideas in selecting the best populations with some demands having optimal criterion have been suggested originally by Bechhofer (1954 Bechhofer, R. E. (1954). A single-sample multiple-decision procedure for ranking means of normal populations with known variances. The Annals of Mathematical Statistics 25:1639. [Google Scholar]) and Gupta (1956 Gupta, S. S. (1956). On a decision rule for a problem in ranking means. Mimeograph Series No. 150. Chapel Hill, North Carolina: University of North Carolina. [Google Scholar], 1965 Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technometrics 7:225245. [Google Scholar]). In the area of ranking and selection, the large part of literature is connected with a single criterion. However, this may not satisfy the experimenter’s demand. We follow methodology of Huang and Lai (1999 Huang, W. T., Lai, Y. T. (1999). Empirical Bayes procedures for selecting the best population with multiple criteria. Annals of the Institute of Statistical Mathematics 51:281299. [Google Scholar]) and the main focus of this article is to select a best population under Type-II progressively censored data for the case of right tail exponential distributions with a bounded and unbounded supports for μi. We formulate the problem and develop a Bayesian setup with two kinds of bounded and unbounded prior for μi. We introduce an empirical Bayes procedure and study the large sample behavior of the proposed rule. It is shown that the proposed empirical Bayes selection rule is asymptotically optimal.  相似文献   

2.
The Linear Discriminant Rule (LD) is theoretically justified for use in classification when the population within-groups covariance matrices are equal, something rarely known in practice. As an alternative, the Quadratic Discriminant Rule (QD) avoids assuming equal covariance matrices, but requires the estimation of a large number of parameters. Hence, the performance of QD may be poor if the training set sizes are small or moderate. In fact, simulation studies have shown that in the two-groups case LD often outperforms QD for small training sets even when the within -groups covariance matrices differ substantially. The present article shows this to be true when there are more than two groups, as well. Thus, it would seem reasonable and useful to develop a data-based method of classification that, in effect, represents a compromise between QD and LD. In this article we develop such a method based on an empirical Bayes formulation in which the within-groups covariance matrices are assumed to be outcomes of a common prior distribution whose parameters are estimated from the data. Two classification rules are developed under this framework and, through the use of extensive simulations, are compared to existing methods when the number of groups is moderate.  相似文献   

3.
A batch of M items is inspected for defectives. Suppose there are d defective items in the batch. Let d 0 be a given standard used to evaluate the quality of the population where 0 < d 0 < M. The problem of testing H 0: d < d 0 versus H 1: d ≥ d 0 is considered. It is assumed that past observations are available when the current testing problem is considered. Accordingly, the empirical Bayes approach is employed. By using information obtained from the past data, an empirical Bayes two-stage testing procedure is developed. The associated asymptotic optimality is investigated. It is proved that the rate of convergence of the empirical Bayes two-stage testing procedure is of order O (exp(? c? n)), for some constant c? > 0, where n is the number of past observations at hand.  相似文献   

4.
ABSTRACT

In the empirical Bayes (EB) decision problem consisting of squared error estimation of the failure rate in exponential distribution, a prior Λ is placed on the gamma family of prior distributions to produce Bayes EB estimators which are admissible. A subclass of such estimators is shown to be asymptotically optimal (a.o.). The results of a Monte Carlo study are presented to demonstrate the a.o. property of the Bayes EB estimators.  相似文献   

5.
In this paper a finite series approximation involving Laguerre polynomials is derived for central and noncentral multivariate gamma distributions. It is shown that if one approximates the density of any k nonnegative continuous random variables by a finite series of Laguerre polynomials up to the (n1, …, nk)th degree, then all the mixed moments up to the order (n1, …, nk) of the approximated distribution equal to the mixed moments up to the same order of the random variables. Some numerical results are given for the bivariate central and noncentral multivariate gamma distributions to indicate the usefulness of the approximations.  相似文献   

6.
This article addresses the various properties and different methods of estimation of the unknown parameter of length and area-biased Maxwell distributions. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of length and area-biased Maxwell distributions (such as moments, moment-generating function (mgf), hazard rate function, mean residual lifetime function, residual lifetime function, reversed residual life function, conditional moments and conditional mgf, stochastic ordering, and measures of uncertainty) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimator, moments estimator, least-square and weighted least-square estimators, maximum product of spacings estimator and compare them using extensive numerical simulations. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using inverted gamma prior for the scale parameter. Furthermore, Bayes estimators and their respective posterior risks are computed and compared using Markov chain Monte Carlo (MCMC) algorithm. Also, bootstrap confidence intervals using frequentist approaches are provided to compare with Bayes credible intervals. Finally, a real dataset has been analyzed for illustrative purposes.  相似文献   

7.
8.
In this article we compare and contrast finite algorithms for computing the noncentral x2 distribution function for odd or even degrees of freedom with the algorithms proposed recently by Ashour & Abdel-Samad (1990). We also obtain an alternative error bound for Ruben's (1974a) algorithm for even degrees of freedom and analyze the rate of convergence of two common infinite series representations for computing the cdf  相似文献   

9.
A sequence of empirical Bayes estimators is given for estimating a distribution function. It is shown that ‘i’ this sequence is asymptotically optimum relative to a Gamma process prior, ‘ii’ the overall expected loss approaches the minimum Bayes risk at a rate of n , and ‘iii’ the estimators form a sequence of proper distribution functions. Finally, the numerical example presented by Susarla and Van Ryzin ‘Ann. Statist., 6, 1978’ reworked by Phadia ‘Ann. Statist., 1, 1980, to appear’ has been analyzed and the results are compared to the numerical results by Phadia  相似文献   

10.
We consider the empirical Bayes decision theory where the component problems are the optimal fixed sample size decision problem and a sequential decision problem. With these components, an empirical Bayes decision procedure selects both a stopping rule function and a terminal decision rule function. Empirical Bayes stopping rules are constructed for each case and the asymptotic behaviours are investigated.  相似文献   

11.
We study the empirical Bayes approach to the sequential estimation problem. An empirical Bayes sequential decision procedure, which consists of a stopping rule and a terminal decision rule, is constructed for use in the component. Asymptotic behaviors of the empirical Bayes risk and the empirical Bayes stopping times are investigated as the number of components increase.  相似文献   

12.
In the present paper we define and investigate a novel class of distributions on the simplex, termed normalized infinitely divisible distributions, which includes the Dirichlet distribution. Distributional properties and general moment formulae are derived. Particular attention is devoted to special cases of normalized infinitely divisible distributions which lead to explicit expressions. As a by-product new distributions over the unit interval and a generalization of the Bessel function distribution are obtained.  相似文献   

13.
N. Ohyauchi 《Statistics》2013,47(3):590-604
In most cases, we use a symmetric loss such as the quadratic loss in a usual estimation problem. But, in the non-regular case when the regularity conditions do not necessarily hold, it seems to be more reasonable to choose an asymmetric loss than the symmetric one. In this paper, we consider the Bayes estimation under the linear exponential (LINEX) loss which is regarded as a typical example of asymmetric loss. We also compare the Bayes risks of estimators under the LINEX loss for a family of truncated distributions and a location parameter family of truncated distributions.  相似文献   

14.
This article is concerned with the minimax estimation of a scale parameter under the quadratic loss function where the family of densities is location-scale type. We obtain results for the case when the scale parameter is bounded below by a known constant. Implications for the estimation of a lower-bounded scale parameter of an exponential distribution are presented under unknown location. Furthermore, classes of improved minimax estimators are derived for the restricted parameter using the Integral Expression for Risk Difference (IERD) approach of Kubokawa (1994 Kubokawa, T. (1994). A unified approach to improving equivariant estimators. Ann. Stat. 22:290299.[Crossref], [Web of Science ®] [Google Scholar]). These classes are shown to include some existing estimators from literature.  相似文献   

15.
Ghosh and Lahiri (1987a,b) considered simultaneous estimation of several strata means and variances where each stratum contains a finite number of elements, under the assumption that the posterior expectation of any stratum mean is a linear function of the sample observations - the so called“posterior linearity” property. In this paper we extend their result by retaining the “posterior linearity“ property of each stratum mean but allowing the superpopulation model whose mean as well as the variance-covariance structure changes from stratum to stratum. The performance of the proposed empirical Bayes estimators are found to be satisfactory both in terms of “asymptotic optimality” (Robbins (1955)) and “relative savings loss” (Efron and Morris (1973)).  相似文献   

16.
In an empirical Bayes decision problem, a prior distribution ? is placed on a one-dimensfonal family G of priors Gw, wεΩ, to produce a Bayes empirical Bayes estimator, The asymptotic optimaiity of the Bayes estimator is established when the support of ? is Ω and the marginal distributions Hw have monotone likelihood ratio and continuous Kullback-Leibler information number.  相似文献   

17.
Predictive influence of explanatory variables has been studied in both univariate and multivariate distributions. In the Bayesian approach, the same problem is considered in absence of multicollinearity in the dataset. The aim of this article is to study the same in the presence of perfect multicollinearity. To do this, we first derived the predictive distributions for full model and reduced model using vague prior density. Then the discrepancies between these predictive distributions are measured by the Kullback–Leibler (K–L) directed measure of divergence to assess the influence of deleted explanatory variables. Finally, distribution of the discrepancies is derived and the test procedure is performed.  相似文献   

18.
Bayesian inference for the intraclass correlation ρ is considered under unequal family sizes. We obtain the posterior distribution of ρ and then compare the performance of the Bayes estimator (posterior mean of ρ) with that of Srivastava's (1984) estimator through simulation. Simulation study shows that the Bayes estimator performs better than the Srivastava's estimator in terms of lower mean square error. We also obtain large sample posteriors of ρ based on the asymptotic posterior distribution and based on the Laplace approximation.  相似文献   

19.
Bernstein polynomial estimators have been used as smooth estimators for density functions and distribution functions. The idea of using them for copula estimation has been given in Sancetta and Satchell (2004). In the present paper we study the asymptotic properties of this estimator: almost sure consistency rates and asymptotic normality. We also obtain explicit expressions for the asymptotic bias and asymptotic variance and show the improvement of the asymptotic mean squared error compared to that of the classical empirical copula estimator. A small simulation study illustrates this superior behavior in small samples.  相似文献   

20.
This study looks at the minimaxity of the maximum likelihood estimator (m.1.e), of the mean of a p-normal population, that has been given by Dahel, Giri and Lepage (1985). This estimator is computed on the basis of three independent samples: the first one is drawn from the whole vector of dimension p and the two others are based on the first p1 and the last p2 components respectively, such as p1 +p2=p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号