首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response surfaces express the behavior of responses and can be used for both single and multi-response problems. A common approach to estimate a response surface using experimental results is the ordinary least squares (OLS) method. Since OLS is very sensitive to outliers, some robust approaches have been discussed in the literature. Although there are many methods available in the literature for multiple response optimizations, there are a few studies in model building especially robust models. Assuming correlated responses, in this paper, a robust coefficient estimation method is proposed for multi response problem based on M-estimators. In order to illustrate the performance of the proposed procedure, a contaminated experimental design using a numerical example available in the literature with some modifications is used. Both the classical multivariate least squares method and the proposed robust multivariate approach are used to estimate regression coefficients of multi-response surfaces based on this example. Moreover, a comparison of the proposed robust multi response surface (RMRS) approach with separate robust estimation of single response show that the proposed approach is more efficient.  相似文献   

2.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

3.
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model.  相似文献   

4.
Sensitivity analysis in regression is concerned with assessing the sensitivity of the results of a regression model (e.g., the objective function, the regression parameters, and the fitted values) to changes in the data. Sensitivity analysis in least squares linear regression has seen a great surge of research activities over the last three decades. By contrast, sensitivity analysis in non-linear regression has received very little attention. This paper deals with the problem of local sensitivity analysis in non-linear regression. Closed-form general formulas are provided for the sensitivities of three standard methods for the estimation of the parameters of a non-linear regression model based on a set of data. These methods are the least squares, the minimax, and the least absolute value methods. The effectiveness of the proposed measures is illustrated by application to several non-linear models including the ultrasonic data and the onion yield data. The proposed sensitivity measures are shown to deal effectively with the detection of influential observations in non-linear regression models.  相似文献   

5.
We developed robust estimators that minimize a weighted L1 norm for the first-order bifurcating autoregressive model. When all of the weights are fixed, our estimate is an L1 estimate that is robust against outlying points in the response space and more efficient than the least squares estimate for heavy-tailed error distributions. When the weights are random and depend on the points in the factor space, the weighted L1 estimate is robust against outlying points in the factor space. Simulated and artificial examples are presented. The behavior of the proposed estimate is modeled through a Monte Carlo study.  相似文献   

6.
Generalized linear mixed models (GLMMs) are widely used to analyse non-normal response data with extra-variation, but non-robust estimators are still routinely used. We propose robust methods for maximum quasi-likelihood and residual maximum quasi-likelihood estimation to limit the influence of outlying observations in GLMMs. The estimation procedure parallels the development of robust estimation methods in linear mixed models, but with adjustments in the dependent variable and the variance component. The methods proposed are applied to three data sets and a comparison is made with the nonparametric maximum likelihood approach. When applied to a set of epileptic seizure data, the methods proposed have the desired effect of limiting the influence of outlying observations on the parameter estimates. Simulation shows that one of the residual maximum quasi-likelihood proposals has a smaller bias than those of the other estimation methods. We further discuss the equivalence of two GLMM formulations when the response variable follows an exponential family. Their extensions to robust GLMMs and their comparative advantages in modelling are described. Some possible modifications of the robust GLMM estimation methods are given to provide further flexibility for applying the method.  相似文献   

7.
The proven optimality properties of empirical Bayes estimators and their documented successful performance in practice have made them popular. Although many statisticians have used these estimators since the landmark paper of James and Stein (1961), relatively few have proposed techniques for protecting them from the effects of outlying observations or outlying parameters. One notable series of studies in protection against outlying parameters was conducted by Efron and Morris (1971, 1972, 1975). In the fully Bayesian case, a general discussion on robust procedures can be found in Berger (1984, 1985). Here we implement and evaluate a different approach for outlier protection in a random-effects model which is based on appropriate specification of the prior distribution. When unusual parameters are present, we estimate the prior as a step function, as suggested by Laird and Louis (1987). This procedure is evaluated empirically, using a number of simulated data sets to compare the effects of the step-function prior with those of the normal and Laplace priors on the prediction of small-area proportions.  相似文献   

8.
The selection of an appropriate subset of explanatory variables to use in a linear regression model is an important aspect of a statistical analysis. Classical stepwise regression is often used with this aim but it could be invalidated by a few outlying observations. In this paper, we introduce a robust F-test and a robust stepwise regression procedure based on weighted likelihood in order to achieve robustness against the presence of outliers. The introduced methodology is asymptotically equivalent to the classical one when no contamination is present. Some examples and simulation are presented.  相似文献   

9.
A simple, robust test for the autocorrelation parameter in an intervention time-series model (AB design) is proposed. It is analogous to the traditional tests and can easily be computed by using the freeware R. In the same way as traditional tests of autocorrelation are based on least squares (LS) fits of a linear model, our robust test is based on the highly efficient Wilcoxon fit of the linear model. We present the results of a Monte Carlo study which show that our robust test inherits the good efficiency properties of this Wilcoxon fit. Its empirical power is only slightly less than the empirical power of the least squares test over situations with normally distributed errors while it exhibited much more power over situations with error distributions having tails heavier than those of a normal distribution. It also showed robustness of validity over all null situations simulated. We also present the results of the application of our test to a real data set which illustrates the robustness of our test.  相似文献   

10.
In modern quality engineering, dual response surface methodology is a powerful tool to model an industrial process by using both the mean and the standard deviation of the measurements as the responses. The least squares method in regression is often used to estimate the coefficients in the mean and standard deviation models, and various decision criteria are proposed by researchers to find the optimal conditions. Based on the inherent hierarchical structure of the dual response problems, we propose a Bayesian hierarchical approach to model dual response surfaces. Such an approach is compared with two frequentist least squares methods by using two real data sets and simulated data.  相似文献   

11.
In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod.  相似文献   

12.
13.
In this paper we illustrate the usefulness of influence functions for studying properties of various statistical estimators of mean rain rate using space-borne radar data. In Martin (1999), estimators using censoring, minimum chi-square, and least squares are compared in terms of asymptotic variance. Here, we use influence functions to consider robustness properties of the same estimators. We also obtain formulas for the asymptotic variance of the estimators using influence functions, and thus show that they may also be used for studying relative efficiency. The least squares estimator, although less efficient, is shown to be more robust in the sense that it has the smallest gross-error sensitivity. In some cases, influence functions associated with the estimators reveal counterintuitive behaviour. For example, observations that are less than the mean rain rate may increase the estimated mean. The additional information gleaned from influence functions may be used to understand better and improve the estimation procedures themselves.  相似文献   

14.
A unified approach is developed for testing hypotheses in the general linear model based on the ranks of the residuals. It complements the nonparametric estimation procedures recently reported in the literature. The testing and estimation procedures together provide a robust alternative to least squares. The methods are similar in spirit to least squares so that results are simple to interpret. Hypotheses concerning a subset of specified parameters can be tested, while the remaining parameters are treated as nuisance parameters. Asymptotically, the test statistic is shown to have a chi-square distribution under the null hypothesis. This result is then extended to cover a sequence of contiguous alternatives from which the Pitman efficacy is derived. The general application of the test requires the consistent estimation of a functional of the underlying distribution and one such estimate is furnished.  相似文献   

15.
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.

The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors.

  相似文献   

16.
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.

The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors.  相似文献   

17.

Outlier detection is an inevitable step to most statistical data analyses. However, the mere detection of an outlying case does not always answer all scientific questions associated with that data point. Outlier detection techniques, classical and robust alike, will typically flag the entire case as outlying, or attribute a specific case weight to the entire case. In practice, particularly in high dimensional data, the outlier will most likely not be outlying along all of its variables, but just along a subset of them. If so, the scientific question why the case has been flagged as an outlier becomes of interest. In this article, a fast and efficient method is proposed to detect variables that contribute most to an outlier’s outlyingness. Thereby, it helps the analyst understand in which way an outlier lies out. The approach pursued in this work is to estimate the univariate direction of maximal outlyingness. It is shown that the problem of estimating that direction can be rewritten as the normed solution of a classical least squares regression problem. Identifying the subset of variables contributing most to outlyingness, can thus be achieved by estimating the associated least squares problem in a sparse manner. From a practical perspective, sparse partial least squares (SPLS) regression, preferably by the fast sparse NIPALS (SNIPLS) algorithm, is suggested to tackle that problem. The performed method is demonstrated to perform well both on simulated data and real life examples.

  相似文献   

18.
In this paper, we propose a methodology to analyze longitudinal data through distances between pairs of observations (or individuals) with regard to the explanatory variables used to fit continuous response variables. Restricted maximum-likelihood and generalized least squares are used to estimate the parameters in the model. We applied this new approach to study the effect of gender and exposure on the deviant behavior variable with respect to tolerance for a group of youths studied over a period of 5 years. Were performed simulations where we compared our distance-based method with classic longitudinal analysis with both AR(1) and compound symmetry correlation structures. We compared them under Akaike and Bayesian information criterions, and the relative efficiency of the generalized variance of the errors of each model. We found small gains in the proposed model fit with regard to the classical methodology, particularly in small samples, regardless of variance, correlation, autocorrelation structure and number of time measurements.  相似文献   

19.
Logistic regression is frequently used for classifying observations into two groups. Unfortunately there are often outlying observations in a data set and these might affect the estimated model and the associated classification error rate. In this paper, the authors study the effect of observations in the training sample on the error rate by deriving influence functions. They obtain a general expression for the influence function of the error rate, and they compute it for the maximum likelihood estimator as well as for several robust logistic discrimination procedures. Besides being of interest in their own right, the influence functions are also used to derive asymptotic classification efficiencies of different logistic discrimination rules. The authors also show how influential points can be detected by means of a diagnostic plot based on the values of the influence function  相似文献   

20.
In this paper, a penalized weighted composite quantile regression estimation procedure is proposed to estimate unknown regression parameters and autoregression coefficients in the linear regression model with heavy-tailed autoregressive errors. Under some conditions, we show that the proposed estimator possesses the oracle properties. In addition, we introduce an iterative algorithm to achieve the proposed optimization problem, and use a data-driven method to choose the tuning parameters. Simulation studies demonstrate that the proposed new estimation method is robust and works much better than the least squares based method when there are outliers in the dataset or the autoregressive error distribution follows heavy-tailed distributions. Moreover, the proposed estimator works comparably to the least squares based estimator when there are no outliers and the error is normal. Finally, we apply the proposed methodology to analyze the electricity demand dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号