首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A universal generator for integer-valued square-integrable random variables is introduced. The generator relies on a rejection technique based on a generalization of the inversion formula for integer-valued random variables. This approach allows to create a dominating probability function, whose evaluation solely involves two integrals depending on the characteristic function of the random variable to be generated. The proposal gives rise to a simple algorithm which may be implemented in a few code lines and which may show good performance when the classical families of distributions—such as the Poisson and the Binomial—are considered. In addition, applications to the Poisson-Tweedie and the Luria-Delbrück distributions are provided.  相似文献   

2.
3.
ABSTRACT. In this paper we consider logspline density estimation for random variables which are contaminated with random noise. In the logspline density estimation for data without noise, the logarithm of an unknown density function is estimated by a polynomial spline, the unknown parameters of which are given by maximum likelihood. When noise is present, B-splines and the Fourier inversion formula are used to construct the logspline density estimator of the unknown density function. Rates of convergence are established when the log-density function is assumed to be in a Besov space. It is shown that convergence rates depend on the smoothness of the density function and the decay rate of the characteristic function of the noise. Simulated data are used to show the finite-sample performance of inference based on the logspline density estimation.  相似文献   

4.
We consider exact and approximate Bayesian computation in the presence of latent variables or missing data. Specifically we explore the application of a posterior predictive distribution formula derived in Sweeting And Kharroubi (2003), which is a particular form of Laplace approximation, both as an importance function and a proposal distribution. We show that this formula provides a stable importance function for use within poor man’s data augmentation schemes and that it can also be used as a proposal distribution within a Metropolis-Hastings algorithm for models that are not analytically tractable. We illustrate both uses in the case of a censored regression model and a normal hierarchical model, with both normal and Student t distributed random effects. Although the predictive distribution formula is motivated by regular asymptotic theory, it is not necessary that the likelihood has a closed form or that it possesses a local maximum.  相似文献   

5.
In this paper, we prove a Hoeffding-like inequality for the survival function of a sum of symmetric independent identically distributed random variables, taking values in a segment [?b, b] of the reals. The symmetric case is relevant to the auditing practice and is an important case study for further investigations. The bounds as given by Hoeffding in 1963 cannot be improved upon unless we restrict the class of random variables, for instance, by assuming the law of the random variables to be symmetric with respect to their mean, which we may assume to be zero. The main result in this paper is an improvement of the Hoeffding bound for i.i.d. random variables which are bounded and have a (upper bound for the) variance by further assuming that they have a symmetric law.  相似文献   

6.
The location linear discriminant function is used in a two-population classification problem when the available data are generated from both binary and continuous random variables. Asymptotic distribution of the studentized location linear discriminant function is derived directly without the inversion of the corresponding characteristic function. The resulting plug-in estimate of the overall error of misclassification consists of the estimate based on the limiting distribution of the discriminant plus a correction term up to the second order. By comparison, our estimate avoids exact knowledge of the Mahalanobis distances which is necessary when the expansions of Vlachonikolis (1985) are used in the case of an arbitrary cut-off point. An example is re-examined and analysed in the present context.  相似文献   

7.
ABSTRACT

In this article, further properties of the Riesz-Bessel distribution are provided. These properties allow for the simulation of random variables from the Riesz-Bessel distribution. Estimation is addressed by nonlinear generalized least squares regression on the empirical characteristic function. The estimator is seen to approximate the maximum likelihood estimator. The distribution is illustrated with financial data.  相似文献   

8.
Rejection sampling is a well-known method to generate random samples from arbitrary target probability distributions. It demands the design of a suitable proposal probability density function (pdf) from which candidate samples can be drawn. These samples are either accepted or rejected depending on a test involving the ratio of the target and proposal densities. The adaptive rejection sampling method is an efficient algorithm to sample from a log-concave target density, that attains high acceptance rates by improving the proposal density whenever a sample is rejected. In this paper we introduce a generalized adaptive rejection sampling procedure that can be applied with a broad class of target probability distributions, possibly non-log-concave and exhibiting multiple modes. The proposed technique yields a sequence of proposal densities that converge toward the target pdf, thus achieving very high acceptance rates. We provide a simple numerical example to illustrate the basic use of the proposed technique, together with a more elaborate positioning application using real data.  相似文献   

9.
This paper proposes a variables quick switching system where the quality characteristic of interest follows a normal distribution and the quality characteristic is evaluated through a process loss function. Most of the variables sampling plans available in the literature focus only on the fraction non-conforming and those plans do not distinguish between the products that fall within the specification limits. The products that fall within specification limits may not be good if their mean is too away from the target value. So developing a sampling plan by considering process loss is inevitable in these situations. Based on this idea, we develop a variables quick switching system based on the process loss function for the application of the processes requiring low process loss. Tables are also constructed for the selection of parameters of variables quick switching system for given acceptable quality level and limiting quality level. The results are explained with examples.  相似文献   

10.
Two-dimensional renewal functions, which are naturally extensions of one-dimensional renewal functions, have wide applicability in areas where two random variables are needed to characterize the underlying process. These functions satisfy the renewal equation, which is not amenable for analytical solutions. This paper proposes a simple approximation for the computation of the two- dimensional renewal function based only on the first two moments and the correlation coefficient of the variables. The approximation yields exact values of renewal function for bivariate exponential distribution function. Illustrations are presented to compare our approximation with that of Iskandar (1991) who provided a computational procedure which requires the use of the bivariate distribution function of the two variables. A two-dimensional warranty model is used to illustrate the approximation.  相似文献   

11.
We propose a unified approach to the estimation of regression parameters under double-sampling designs, in which a primary sample consisting of data on the rough or proxy measures for the response and/or explanatory variables as well as a validation subsample consisting of data on the exact measurements are available. We assume that the validation sample is a simple random subsample from the primary sample. Our proposal utilizes a specific parametric model to extract the partial information contained in the primary sample. The resulting estimator is consistent even if such a model is misspecified, and it achieves higher asymptotic efficiency than the estimator based only on the validation data. Specific cases are discussed to illustrate the application of the estimator proposed.  相似文献   

12.
Correction     
In many probability and mathematical statistics courses the probability generating function (PGF) is typically overlooked in favor of the more utilized moment generating function. However, for certain types of random variables, the PGF may be more appealing. For example, sums of independent, non-negative, integer-valued random variables with finite support are easily studied via the PGF. In particular, the exact distribution of the sum can easily be calculated. Several illustrative classroom examples, with varying degrees of difficulty, are presented. All of the examples have been implemented using the R statistical software package.  相似文献   

13.
The exact distribution of the maximum likelihood estimators in an exponential regression model are derived. The approach involves finding the distribution of the score statistic, since the log likelihood is globally concave, and then using the one-to-one correspondence between this and the estimator. The distribution is a weighted sum of independent exponential random variables. The exact p.d.f. is found by inverting the characteristic function by a straightforward application of residue theory.  相似文献   

14.
The Mellin convolution is used to derive in analytical form an exact 3-parameterprobabilitydensity function of the quotient of two noncentral normal random variables. In contrast with the 5-parameter probability density function previously derivedby Fieller (1932) and Hinkley (1969), this 3-parameter probability density function is feasible for computer evaluation of the mean and cumulative distribution function, which are needed, for example, when dealing with estimation and distribution problems in regression analysis and sampling theory. When the normal variables are independent, the probability density function reduces to a 2-parameter function, for which a computer program is operational. An illustrative example is given for one set of parameters when the normal variables are independent, in which themean and functional form of the probability density function are presented, together with a brief tabulation of the probability density function.  相似文献   

15.
Four estimators of the prediction mean squared error (MSB) of an estimated finite population total for a zero-one characteristic are examined. The characteristic associated with each population unit is modeled as the realization of a Bernoulli random variable whose expected value is a nonlinear function of a parameter vector and a set of known auxiliary variables. To compare the estimators, a simulation study is conducted using a population of hospitals. The MSB estimator Implied by the form of the assumed model underestimates the mean squared error in each of the cases studied and produces confidence lntervals with less than the nominal coverage probabilities. Of the three alternative MSE estimators presented, a linear approximation to the jackknife produces the best results and improves upon the model-specific estimator.  相似文献   

16.
Fitting general stable laws to data by maximum likelihood is important but difficult. This is why much research has considered alternative procedures based on empirical characteristic functions. Two problems then are how many values of the characteristic function to select, and how to position them. We provide recommendations for both of these topics. We propose an arithmetic spacing of transform variables, coupled with a recommendation for the location of the variables. It is shown that arithmetic spacing, which is far simpler to implement, closely approximates optimum spacing. The new methods that result are compared in simulation studies with existing methods, including maximum-likelihood. The main conclusion is that arithmetic spacing of the values of the characteristic function, coupled with appropriately limiting the range for these values, improves the overall performance of the regression-type method of Koutrouvelis, which is the standard procedure for estimating general stable law parameters.  相似文献   

17.
A general class of rank statistics based on the characteristic function is introduced for testing goodness‐of‐fit hypotheses about the copula of a continuous random vector. These statistics are defined as L 2 weighted functional distances between a nonparametric estimator and a semi‐parametric estimator of the characteristic function associated with a copula. It is shown that these statistics behave asymptotically as degenerate V ‐statistics of order four and that the limit distributions have representations in terms of weighted sums of independent chi‐square variables. The consistency of the tests against general alternatives is established and an asymptotically valid parametric bootstrap is suggested for the computation of the critical values of the tests. The behaviour of the new tests in small and moderate sample sizes is investigated with the help of simulations and compared with a competing test based on the empirical copula. Finally, the methodology is illustrated on a five‐dimensional data set.  相似文献   

18.
Stable random variables are used in economics, engineering, hydrology and physics to model situations where the underlying distributions are heavy tailed. Stable densities do not generally have explicit formula, even in one variable. This paper describes the steps necessary to calculate multivariate stable densities by numerically inverting the characteristic function. We give a program tocalculate two dimensional stable densites that uses a recent two dimensional adaptive quadratureroutine. Graphs of families of such densities are given for a range of values of a and various spectral measures  相似文献   

19.
This paper proposes a class of nonparametric estimators for the bivariate survival function estimation under both random truncation and random censoring. In practice, the pair of random variables under consideration may have certain parametric relationship. The proposed class of nonparametric estimators uses such parametric information via a data transformation approach and thus provides more accurate estimates than existing methods without using such information. The large sample properties of the new class of estimators and a general guidance of how to find a good data transformation are given. The proposed method is also justified via a simulation study and an application on an economic data set.  相似文献   

20.
Partial Saddlepoint Approximations for Transformed Means   总被引:2,自引:0,他引:2  
The full saddlepoint approximation for real valued smooth functions of means requires the existence of the joint cumulant generating function for the entire vector of random variables which are being transformed. We propose a mixed saddlepoint-Edgeworth approximation requiring the existence of a cumulant generating function for only part of the random vector considered, while retaining partially the relative nature of the errors. Tail probability approximations are obtained under conditions which enable the approximations to be used in resampling situations and hence to obtain a result on the relative error of coverage in the case of the bootstrap approximation to the confidence interval for the Studentized mean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号