首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of distributions for a random pair of angles that determine a point on the surface of a three-dimensional unit sphere (three-dimensional directions) is proposed. It is based on the use of nonnegative double trigonometric (Fourier) sums (series). Using this family of distributions, data that possess rotational symmetry, asymmetry or one or more modes can be modeled. In addition, the joint trigonometric moments are expressed in terms of the model parameters. An efficient Newton-like optimization algorithm on manifolds is developed to obtain the maximum likelihood estimates of the parameters. The proposed family is applied to two real data sets studied previously in the literature. The first data set is related to the measurements of magnetic remanence in samples of Precambrian volcanics in Australia and the second to the arrival directions of low mu showers of cosmic rays.  相似文献   

2.
ABSTRACT

Recently, the Bayesian nonparametric approaches in survival studies attract much more attentions. Because of multimodality in survival data, the mixture models are very common. We introduce a Bayesian nonparametric mixture model with Burr distribution (Burr type XII) as the kernel. Since the Burr distribution shares good properties of common distributions on survival analysis, it has more flexibility than other distributions. By applying this model to simulated and real failure time datasets, we show the preference of this model and compare it with Dirichlet process mixture models with different kernels. The Markov chain Monte Carlo (MCMC) simulation methods to calculate the posterior distribution are used.  相似文献   

3.
Abstract

This paper deals with Bayesian estimation and prediction for the inverse Weibull distribution with shape parameter α and scale parameter λ under general progressive censoring. We prove that the posterior conditional density functions of α and λ are both log-concave based on the assumption that λ has a gamma prior distribution and α follows a prior distribution with log-concave density. Then, we present the Gibbs sampling strategy to estimate under squared-error loss any function of the unknown parameter vector (α, λ) and find credible intervals, as well as to obtain prediction intervals for future order statistics. Monte Carlo simulations are given to compare the performance of Bayesian estimators derived via Gibbs sampling with the corresponding maximum likelihood estimators, and a real data analysis is discussed in order to illustrate the proposed procedure. Finally, we extend the developed methodology to other two-parameter distributions, including the Weibull, Burr type XII, and flexible Weibull distributions, and also to general progressive hybrid censoring.  相似文献   

4.
ABSTRACT

A common Bayesian hierarchical model is where high-dimensional observed data depend on high-dimensional latent variables that, in turn, depend on relatively few hyperparameters. When the full conditional distribution over latent variables has a known form, general MCMC sampling need only be performed on the low-dimensional marginal posterior distribution over hyperparameters. This improves on popular Gibbs sampling that computes over the full space. Sampling the marginal posterior over hyperparameters exhibits good scaling of compute cost with data size, particularly when that distribution depends on a low-dimensional sufficient statistic.  相似文献   

5.
This article presents a fully Bayesian approach to modeling incomplete longitudinal data using the t linear mixed model with AR(p) dependence. Markov chain Monte Carlo (MCMC) techniques are implemented for computing posterior distributions of parameters. To facilitate the computation, two types of auxiliary indicator matrices are incorporated into the model. Meanwhile, the constraints on the parameter space arising from the stationarity conditions for the autoregressive parameters are handled by a reparametrization scheme. Bayesian predictive inferences for the future vector are also investigated. An application is illustrated through a real example from a multiple sclerosis clinical trial.  相似文献   

6.
ABSTRACT

In the current study we develop the robust Bayesian inference for the generalized inverted family of distributions (GIFD) under an ε-contamination class of prior distributions for the shape parameter α, with different possibilities of known and unknown scale parameter. We used Type II censoring and Bartholomew sampling scheme (1963) for the following derivations under the squared-error loss function (SELF) and linear exponential (LINEX) loss function : ML-II Bayes estimators of the i) parameters; ii) Reliability function and; iii) Hazard function. We also present simulation study and analysis of a real data set.  相似文献   

7.
ABSTRACT

In this article, we propose a new distribution by mixing normal and Pareto distributions, and the new distribution provides an unusual hazard function. We model the mean and the variance with covariates for heterogeneity. Estimation of the parameters is obtained by the Bayesian method using Markov Chain Monte Carlo (MCMC) algorithms. Proposal distribution in MCMC is proposed with a defined working variable related to the observations. Through the simulation, the method shows a dependable performance of the model. We demonstrate through establishing model under a real dataset that the proposed model and method can be more suitable than the previous report.  相似文献   

8.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

9.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

10.
The generalized lambda distribution, GLD(λ1, λ2 λ3, λ4), is a four-parameter family that has been used for fitting distributions to a wide variety of data sets. The analysis of the λ3 and λ4 values that actually yield valid distributions has (until now) been incomplete. Moreover, because of computational problems and theoretical shortcomings, the moment space over which the GLD can be applied has been limited. This paper completes the analysis of the λ3 and λ4 values that are associated with valid distributions, improves previous computational methods to reduce errors associated with fitting data, expands the parameter space over which the GLD can be used, and uses a four-parameter generalized beta distribution to cover the portion of the parameter space where the GLD is not applicable. In short, the paper extends the GLD to an EGLD system that can be used for fitting distributions to data sets that that are cited in the literature as actually occurring in practice. Examples of use of the proposed system are included  相似文献   

11.
In this application note paper, we propose and examine the performance of a Bayesian approach for a homoscedastic nonlinear regression (NLR) model assuming errors with two-piece scale mixtures of normal (TP-SMN) distributions. The TP-SMN is a large family of distributions, covering both symmetrical/ asymmetrical distributions as well as light/heavy tailed distributions, and provides an alternative to another well-known family of distributions, called scale mixtures of skew-normal distributions. The proposed family and Bayesian approach provides considerable flexibility and advantages for NLR modelling in different practical settings. We examine the performance of the approach using simulated and real data.KEYWORDS: Gibbs sampling, MCMC method, nonlinear regression model, scale mixtures of normal family, two-piece distributions  相似文献   

12.
ABSTRACT

This paper proposes a hysteretic autoregressive model with GARCH specification and a skew Student's t-error distribution for financial time series. With an integrated hysteresis zone, this model allows both the conditional mean and conditional volatility switching in a regime to be delayed when the hysteresis variable lies in a hysteresis zone. We perform Bayesian estimation via an adaptive Markov Chain Monte Carlo sampling scheme. The proposed Bayesian method allows simultaneous inferences for all unknown parameters, including threshold values and a delay parameter. To implement model selection, we propose a numerical approximation of the marginal likelihoods to posterior odds. The proposed methodology is illustrated using simulation studies and two major Asia stock basis series. We conduct a model comparison for variant hysteresis and threshold GARCH models based on the posterior odds ratios, finding strong evidence of the hysteretic effect and some asymmetric heavy-tailness. Versus multi-regime threshold GARCH models, this new collection of models is more suitable to describe real data sets. Finally, we employ Bayesian forecasting methods in a Value-at-Risk study of the return series.  相似文献   

13.
A stochastic volatility in mean model with correlated errors using the symmetrical class of scale mixtures of normal distributions is introduced in this article. The scale mixture of normal distributions is an attractive class of symmetric distributions that includes the normal, Student-t, slash and contaminated normal distributions as special cases, providing a robust alternative to estimation in stochastic volatility in mean models in the absence of normality. Using a Bayesian paradigm, an efficient method based on Markov chain Monte Carlo (MCMC) is developed for parameter estimation. The methods developed are applied to analyze daily stock return data from the São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA). The Bayesian predictive information criteria (BPIC) and the logarithm of the marginal likelihood are used as model selection criteria. The results reveal that the stochastic volatility in mean model with correlated errors and slash distribution provides a significant improvement in model fit for the IBOVESPA data over the usual normal model.  相似文献   

14.
Use of Bayesian modelling and analysis has become commonplace in many disciplines (finance, genetics and image analysis, for example). Many complex data sets are collected which do not readily admit standard distributions, and often comprise skew and kurtotic data. Such data is well-modelled by the very flexibly-shaped distributions of the quantile distribution family, whose members are defined by the inverse of their cumulative distribution functions and rarely have analytical likelihood functions defined. Without explicit likelihood functions, Bayesian methodologies such as Gibbs sampling cannot be applied to parameter estimation for this valuable class of distributions without resorting to numerical inversion. Approximate Bayesian computation provides an alternative approach requiring only a sampling scheme for the distribution of interest, enabling easier use of quantile distributions under the Bayesian framework. Parameter estimates for simulated and experimental data are presented.  相似文献   

15.
ABSTRACT

This paper deals with Bayes, robust Bayes, and minimax predictions in a subfamily of scale parameters under an asymmetric precautionary loss function. In Bayesian statistical inference, the goal is to obtain optimal rules under a specified loss function and an explicit prior distribution over the parameter space. However, in practice, we are not able to specify the prior totally or when a problem must be solved by two statisticians, they may agree on the choice of the prior but not the values of the hyperparameters. A common approach to the prior uncertainty in Bayesian analysis is to choose a class of prior distributions and compute some functional quantity. This is known as Robust Bayesian analysis which provides a way to consider the prior knowledge in terms of a class of priors Γ for global prevention against bad choices of hyperparameters. Under a scale invariant precautionary loss function, we deal with robust Bayes predictions of Y based on X. We carried out a simulation study and a real data analysis to illustrate the practical utility of the prediction procedure.  相似文献   

16.
This article deals with the Bayesian and non Bayesian estimation of multicomponent stress–strength reliability by assuming the Kumaraswamy distribution. Both stress and strength are assumed to have a Kumaraswamy distribution with common and known shape parameter. The reliability of such a system is obtained by the methods of maximum likelihood and Bayesian approach and the results are compared using Markov Chain Monte Carlo (MCMC) technique for both small and large samples. Finally, two data sets are analyzed for illustrative purposes.  相似文献   

17.
In this paper, we study the statistical inference based on the Bayesian approach for regression models with the assumption that independent additive errors follow normal, Student-t, slash, contaminated normal, Laplace or symmetric hyperbolic distribution, where both location and dispersion parameters of the response variable distribution include nonparametric additive components approximated by B-splines. This class of models provides a rich set of symmetric distributions for the model error. Some of these distributions have heavier or lighter tails than the normal as well as different levels of kurtosis. In order to draw samples of the posterior distribution of the interest parameters, we propose an efficient Markov Chain Monte Carlo (MCMC) algorithm, which combines Gibbs sampler and Metropolis–Hastings algorithms. The performance of the proposed MCMC algorithm is assessed through simulation experiments. We apply the proposed methodology to a real data set. The proposed methodology is implemented in the R package BayesGESM using the function gesm().  相似文献   

18.
In this paper, the statistical inference of the unknown parameters of a Burr Type III (BIII) distribution based on the unified hybrid censored sample is studied. The maximum likelihood estimators of the unknown parameters are obtained using the Expectation–Maximization algorithm. It is observed that the Bayes estimators cannot be obtained in explicit forms, hence Lindley's approximation and the Markov Chain Monte Carlo (MCMC) technique are used to compute the Bayes estimators. Further the highest posterior density credible intervals of the unknown parameters based on the MCMC samples are provided. The new model selection test is developed in discriminating between two competing models under unified hybrid censoring scheme. Finally, the potentiality of the BIII distribution to analyze the real data is illustrated by using the fracture toughness data of the three different materials namely silicon nitride (Si3N4), Zirconium dioxide (ZrO2) and sialon (Si6?xAlxOxN8?x). It is observed that for the present data sets, the BIII distribution has the better fit than the Weibull distribution which is frequently used in the fracture toughness data analysis.  相似文献   

19.
ABSTRACT

In this paper, we propose a parameter estimation method for the three-parameter lognormal distribution based on Type-II right censored data. In the proposed method, under mild conditions, the estimates always exist uniquely in the entire parameter space, and the estimators also have consistency over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method performs very well compared to a prominent method of estimation in terms of bias and root mean squared error (RMSE) in small-sample situations. Finally, two examples based on real data sets are presented for illustrating the proposed method.  相似文献   

20.
ABSTRACT

Simplex regression model is often employed to analyze continuous proportion data in many studies. In this paper, we extend the assumption of a constant dispersion parameter (homogeneity) to varying dispersion parameter (heterogeneity) in Simplex regression model, and present the B-spline to approximate the smoothing unknown function within the Bayesian framework. A hybrid algorithm combining the block Gibbs sampler and the Metropolis-Hastings algorithm is presented for sampling observations from the posterior distribution. The procedures for computing model comparison criteria such as conditional predictive ordinate statistic, deviance information criterion, and averaged mean squared error are presented. Also, we develop a computationally feasible Bayesian case-deletion influence measure based on the Kullback-Leibler divergence. Several simulation studies and a real example are employed to illustrate the proposed methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号