首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

3.
4.
In this paper, we develop Bayesian methodology and computational algorithms for variable subset selection in Cox proportional hazards models with missing covariate data. A new joint semi-conjugate prior for the piecewise exponential model is proposed in the presence of missing covariates and its properties are examined. The covariates are assumed to be missing at random (MAR). Under this new prior, a version of the Deviance Information Criterion (DIC) is proposed for Bayesian variable subset selection in the presence of missing covariates. Monte Carlo methods are developed for computing the DICs for all possible subset models in the model space. A Bone Marrow Transplant (BMT) dataset is used to illustrate the proposed methodology.  相似文献   

5.
In data sets with many predictors, algorithms for identifying a good subset of predictors are often used. Most such algorithms do not allow for any relationships between predictors. For example, stepwise regression might select a model containing an interaction AB but neither main effect A or B. This paper develops mathematical representations of this and other relations between predictors, which may then be incorporated in a model selection procedure. A Bayesian approach that goes beyond the standard independence prior for variable selection is adopted, and preference for certain models is interpreted as prior information. Priors relevant to arbitrary interactions and polynomials, dummy variables for categorical factors, competing predictors, and restrictions on the size of the models are developed. Since the relations developed are for priors, they may be incorporated in any Bayesian variable selection algorithm for any type of linear model. The application of the methods here is illustrated via the stochastic search variable selection algorithm of George and McCulloch (1993), which is modified to utilize the new priors. The performance of the approach is illustrated with two constructed examples and a computer performance dataset.  相似文献   

6.
In this paper, we propose a Bayesian variable selection method for linear regression models with high-order interactions. Our method automatically enforces the heredity constraint, that is, a higher order interaction term can exist in the model only if both of its parent terms are in the model. Based on the stochastic search variable selection George and McCulloch (1993), we propose a novel hierarchical prior that fully considers the heredity constraint and controls the degree of sparsity simultaneously. We develop a Markov chain Monte Carlo (MCMC) algorithm to explore the model space efficiently while accounting for the heredity constraint by modifying the shotgun stochastic search algorithm Hans et al. (2007). The performance of the new model is demonstrated through comparisons with other methods. Numerical studies on both real data analysis and simulations show that our new method tends to find relevant variable more effectively when higher order interaction terms are considered.  相似文献   

7.
ABSTRACT

Functional linear model is of great practical importance, as exemplified by applications in high-throughput studies such as meteorological and biomedical research. In this paper, we propose a new functional variable selection procedure, called functional variable selection via Gram–Schmidt (FGS) orthogonalization, for a functional linear model with a scalar response and multiple functional predictors. Instead of the regularization methods, FGS takes into account the similarity between the functional predictors in a data-driven way and utilizes the technique of Gram–Schmidt orthogonalization to remove the irrelevant predictors. FGS can successfully discriminate between the relevant and the irrelevant functional predictors to achieve a high true positive ratio without including many irrelevant predictors, and yield explainable models, which offers a new perspective for the variable selection method in the functional linear model. Simulation studies are carried out to evaluate the finite sample performance of the proposed method, and also a weather data set is analysed.  相似文献   

8.
Hea-Jung Kim  Taeyoung Roh 《Statistics》2013,47(5):1082-1111
In regression analysis, a sample selection scheme often applies to the response variable, which results in missing not at random observations on the variable. In this case, a regression analysis using only the selected cases would lead to biased results. This paper proposes a Bayesian methodology to correct this bias based on a semiparametric Bernstein polynomial regression model that incorporates the sample selection scheme into a stochastic monotone trend constraint, variable selection, and robustness against departures from the normality assumption. We present the basic theoretical properties of the proposed model that include its stochastic representation, sample selection bias quantification, and hierarchical model specification to deal with the stochastic monotone trend constraint in the nonparametric component, simple bias corrected estimation, and variable selection for the linear components. We then develop computationally feasible Markov chain Monte Carlo methods for semiparametric Bernstein polynomial functions with stochastically constrained parameter estimation and variable selection procedures. We demonstrate the finite-sample performance of the proposed model compared to existing methods using simulation studies and illustrate its use based on two real data applications.  相似文献   

9.
Many model‐free dimension reduction methods have been developed for high‐dimensional regression data but have not paid much attention on problems with non‐linear confounding. In this paper, we propose an inverse‐regression method of dependent variable transformation for detecting the presence of non‐linear confounding. The benefit of using geometrical information from our method is highlighted. A ratio estimation strategy is incorporated in our approach to enhance the interpretation of variable selection. This approach can be implemented not only in principal Hessian directions (PHD) but also in other recently developed dimension reduction methods. Several simulation examples that are reported for illustration and comparisons are made with sliced inverse regression and PHD in ignorance of non‐linear confounding. An illustrative application to one real data is also presented.  相似文献   

10.
The lasso is a popular technique of simultaneous estimation and variable selection in many research areas. The marginal posterior mode of the regression coefficients is equivalent to estimates given by the non-Bayesian lasso when the regression coefficients have independent Laplace priors. Because of its flexibility of statistical inferences, the Bayesian approach is attracting a growing body of research in recent years. Current approaches are primarily to either do a fully Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithm or use Monte Carlo expectation maximization (MCEM) methods with an MCMC algorithm in each E-step. However, MCMC-based Bayesian method has much computational burden and slow convergence. Tan et al. [An efficient MCEM algorithm for fitting generalized linear mixed models for correlated binary data. J Stat Comput Simul. 2007;77:929–943] proposed a non-iterative sampling approach, the inverse Bayes formula (IBF) sampler, for computing posteriors of a hierarchical model in the structure of MCEM. Motivated by their paper, we develop this IBF sampler in the structure of MCEM to give the marginal posterior mode of the regression coefficients for the Bayesian lasso, by adjusting the weights of importance sampling, when the full conditional distribution is not explicit. Simulation experiments show that the computational time is much reduced with our method based on the expectation maximization algorithm and our algorithms and our methods behave comparably with other Bayesian lasso methods not only in prediction accuracy but also in variable selection accuracy and even better especially when the sample size is relatively large.  相似文献   

11.
We describe the use of perfect sampling algorithms for Bayesian variable selection in a linear regression model. Starting with a basic case solved by Huang and Djurić (EURASIP J. Appl. Si. Pr. 1 (2002) 38), where the model coefficients and noise variance are assumed to be known, we generalize the model step by step to allow for other sources of randomness. We specify perfect simulation algorithms that solve these cases by incorporating various techniques including Gibbs sampling, the perfect independent Metropolis–Hastings (IMH) algorithm, and recently developed “slice coupling” algorithms. Applications to simulated data sets suggest that our algorithms perform well in identifying relevant predictor variables.  相似文献   

12.
One of the standard problems in statistics consists of determining the relationship between a response variable and a single predictor variable through a regression function. Background scientific knowledge is often available that suggests that the regression function should have a certain shape (e.g. monotonically increasing or concave) but not necessarily a specific parametric form. Bernstein polynomials have been used to impose certain shape restrictions on regression functions. The Bernstein polynomials are known to provide a smooth estimate over equidistant knots. Bernstein polynomials are used in this paper due to their ease of implementation, continuous differentiability, and theoretical properties. In this work, we demonstrate a connection between the monotonic regression problem and the variable selection problem in the linear model. We develop a Bayesian procedure for fitting the monotonic regression model by adapting currently available variable selection procedures. We demonstrate the effectiveness of our method through simulations and the analysis of real data.  相似文献   

13.
Bayesian selection of variables is often difficult to carry out because of the challenge in specifying prior distributions for the regression parameters for all possible models, specifying a prior distribution on the model space and computations. We address these three issues for the logistic regression model. For the first, we propose an informative prior distribution for variable selection. Several theoretical and computational properties of the prior are derived and illustrated with several examples. For the second, we propose a method for specifying an informative prior on the model space, and for the third we propose novel methods for computing the marginal distribution of the data. The new computational algorithms only require Gibbs samples from the full model to facilitate the computation of the prior and posterior model probabilities for all possible models. Several properties of the algorithms are also derived. The prior specification for the first challenge focuses on the observables in that the elicitation is based on a prior prediction y 0 for the response vector and a quantity a 0 quantifying the uncertainty in y 0. Then, y 0 and a 0 are used to specify a prior for the regression coefficients semi-automatically. Examples using real data are given to demonstrate the methodology.  相似文献   

14.
In this article, we compare alternative missing imputation methods in the presence of ordinal data, in the framework of CUB (Combination of Uniform and (shifted) Binomial random variable) models. Various imputation methods are considered, as are univariate and multivariate approaches. The first step consists of running a simulation study designed by varying the parameters of the CUB model, to consider and compare CUB models as well as other methods of missing imputation. We use real datasets on which to base the comparison between our approach and some general methods of missing imputation for various missing data mechanisms.  相似文献   

15.
In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large-sample and the high-dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.  相似文献   

16.
Dealing with incomplete data is a pervasive problem in statistical surveys. Bayesian networks have been recently used in missing data imputation. In this research, we propose a new methodology for the multivariate imputation of missing data using discrete Bayesian networks and conditional Gaussian Bayesian networks. Results from imputing missing values in coronary artery disease data set and milk composition data set as well as a simulation study from cancer-neapolitan network are presented to demonstrate and compare the performance of three Bayesian network-based imputation methods with those of multivariate imputation by chained equations (MICE) and the classical hot-deck imputation method. To assess the effect of the structure learning algorithm on the performance of the Bayesian network-based methods, two methods called Peter-Clark algorithm and greedy search-and-score have been applied. Bayesian network-based methods are: first, the method introduced by Di Zio et al. [Bayesian networks for imputation, J. R. Stat. Soc. Ser. A 167 (2004), 309–322] in which, each missing item of a variable is imputed using the information given in the parents of that variable; second, the method of Di Zio et al. [Multivariate techniques for imputation based on Bayesian networks, Neural Netw. World 15 (2005), 303–310] which uses the information in the Markov blanket set of the variable to be imputed and finally, our new proposed method which applies the whole available knowledge of all variables of interest, consisting the Markov blanket and so the parent set, to impute a missing item. Results indicate the high quality of our new proposed method especially in the presence of high missingness percentages and more connected networks. Also the new method have shown to be more efficient than the MICE method for small sample sizes with high missing rates.  相似文献   

17.
In this article, we develop a robust variable selection procedure jointly for fixed and random effects in linear mixed models for longitudinal data. We propose a penalized robust estimator for both the regression coefficients and the variance of random effects based on a re-parametrization of the linear mixed models. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection method. Simulation study shows the robustness of the proposed method against outliers. In the end, the proposed methods is illustrated in the analysis of a real data set.  相似文献   

18.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

19.
In high-dimensional setting, componentwise L2boosting has been used to construct sparse model that performs well, but it tends to select many ineffective variables. Several sparse boosting methods, such as, SparseL2Boosting and Twin Boosting, have been proposed to improve the variable selection of L2boosting algorithm. In this article, we propose a new general sparse boosting method (GSBoosting). The relations are established between GSBoosting and other well known regularized variable selection methods in the orthogonal linear model, such as adaptive Lasso, hard thresholds, etc. Simulation results show that GSBoosting has good performance in both prediction and variable selection.  相似文献   

20.
In some fields, we are forced to work with missing data in multivariate time series. Unfortunately, the data analysis in this context cannot be carried out in the same way as in the case of complete data. To deal with this problem, a Bayesian analysis of multivariate threshold autoregressive models with exogenous inputs and missing data is carried out. In this paper, Markov chain Monte Carlo methods are used to obtain samples from the involved posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method in this class of multivariate process. The number of regimes is estimated using marginal likelihood or product parameter-space strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号