首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, based on an adaptive Type-II progressively censored sample from the generalized exponential distribution, the maximum likelihood and Bayesian estimators are derived for the unknown parameters as well as the reliability and hazard functions. Also, the approximate confidence intervals of the unknown parameters, and the reliability and hazard functions are calculated. Markov chain Monte Carlo method is applied to carry out a Bayesian estimation procedure and in turn calculate the credible intervals. Moreover, results from simulation studies assessing the performance of our proposed method are included. Finally, an illustrative example using real data set is presented for illustrating all the inferential procedures developed here.  相似文献   

2.
Following the work of Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring. Comm Statist Theory Methods. 1988;17:1857–1870], several results have been developed regarding the exact likelihood inference of exponential parameters based on different forms of censored samples. In this paper, the conditional maximum likelihood estimators (MLEs) of two exponential mean parameters are derived under joint generalized Type-I hybrid censoring on the two samples. The moment generating functions (MGFs) and the exact densities of the conditional MLEs are obtained, using which exact confidence intervals are then developed for the model parameters. We also derive the means, variances, and mean squared errors of these estimates. An efficient computational method is developed based on the joint MGF. Finally, an example is presented to illustrate the methods of inference developed here.  相似文献   

3.
In this article, we develop exact inference for two populations that have a two-parameter exponential distribution with the same location parameter and different scale parameters when Type-II censoring is implemented on the two samples in a combined manner. We obtain the conditional maximum likelihood estimators (MLEs) of the three parameters. We then derive the exact distributions of these MLEs along with their moment generating functions. Based on general entropy loss function, Bayesian study about the parameters is presented. Finally, some simulation results and an illustrative example are presented to illustrate the methods of inference developed here.  相似文献   

4.
In this paper, the problem of predicting the future sequential order statistics based on observed multiply Type-II censored samples of sequential order statistics from one- and two-parameter exponential distributions is addressed. Using the Bayesian approach, the predictive and survival functions are derived and then the point and interval predictions are obtained. Finally, two numerical examples are presented for illustration.  相似文献   

5.
In this article, we introduce a new scheme called joint progressive type-I (JPC-I) censored and as a special case, joint type-I censored scheme. Bayesian and non Bayesian estimators have been obtained for two exponential populations under both JPC-I censored scheme and joint type-I censored. The maximum likelihood estimators of the parameters, the asymptotic variance covariance matrix, have been obtained. Bayes estimators have been developed under squared error loss function using independent gamma prior distributions. Moreover, approximate confidence region based on the asymptotic normality of the maximum likelihood estimators and credible confidence region from a Bayesian viewpoint are also discussed and compared with two Bootstrap confidence regions. A numerical illustration for these new results is given.  相似文献   

6.
The modified Tiku test and the modified likelihood ratio test proposed by Tiku and Vaughan (1991) for k=2 exponential populations are extended to . k > 2 populations. These tests are shown to be more powerful than the test proposed by Kambo and Awad (1985). Unlike the Kambo-Awad test, the proposed tests are shown to have almost symmetric power functions. Further, these tests can be applied when there is both left or right censoring present, in contrast to the tests of Sukhatme (1937), Bain and Englehardt (1991) and Elewa et al. (1992), who assume that there is no left censoring.  相似文献   

7.
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems.  相似文献   

8.
《Statistics》2012,46(6):1329-1356
ABSTRACT

Recently Mondal and Kundu [Mondal S, Kundu D. A new two sample type-II progressive censoring scheme. Commun Stat Theory Methods. 2018. doi:10.1080/03610926.2018.1472781] introduced a Type-II progressive censoring scheme for two populations. In this article, we extend the above scheme for more than two populations. The aim of this paper is to study the statistical inference under the multi-sample Type-II progressive censoring scheme, when the underlying distributions are exponential. We derive the maximum likelihood estimators (MLEs) of the unknown parameters when they exist and find out their exact distributions. The stochastic monotonicity of the MLEs has been established and this property can be used to construct exact confidence intervals of the parameters via pivoting the cumulative distribution functions of the MLEs. The distributional properties of the ordered failure times are also obtained. The Bayesian analysis of the unknown model parameters has been provided. The performances of the different methods have been examined by extensive Monte Carlo simulations. We analyse two data sets for illustrative purposes.  相似文献   

9.
ABSTRACT

In this paper, we consider a general form for the underlying distribution and a general conjugate prior, and develop a general procedure for deriving the maximum likelihood and Bayesian estimators based on an observed generalized Type-II hybrid censored sample. The problems of predicting the future order statistics from the same sample and that from a future sample are also discussed from a Bayesian viewpoint. For the illustration of the developed results, the exponential and Pareto distributions are used as examples. Finally, two numerical examples are presented for illustrating all the inferential procedures developed here.  相似文献   

10.
In this paper, we consider an exponential form for the underlying distributionand a conjugate prior, and develop a procedure for deriving the maximum likelihood and Bayesian estimators based on an observed generalized Type-I hybrid censored sample. The problems of predicting the future order statistics from the same sample and that from a future sample are also discussed from a Bayesian viewpoint. For the illustration of the developed results, the exponential and Pareto distributions are used as examples. Finally, two numerical examples are presented for illustrating all the inferential procedures developed here.  相似文献   

11.
In industrial life tests, reliability analysis and clinical trials, the type-II progressive censoring methodology, which allows for random removals of the remaining survival units at each failure time, has become quite popular for analyzing lifetime data. Parameter estimation under progressively type-II censored samples for many common lifetime distributions has been investigated extensively. However, how to estimate unknown parameters of the mixed distribution models under progressive type-II censoring schemes is still a challenging and interesting problem. Based on progressively type-II censored samples, this paper addresses the estimation problem of mixed generalized exponential distributions. In addition, it is observed that the maximum-likelihood estimates (MLEs) cannot be easily obtained in closed form due to the complexity of the likelihood function. Thus, we make good use of the expectation-maximization algorithm to obtain the MLEs. Finally, some simulations are implemented in order to show the performance of the proposed method under finite samples and a case analysis is illustrated.  相似文献   

12.
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure.  相似文献   

13.
This paper studies the problem of designing a curtailed Bayesian sampling plan (CBSP) with Type-II censored data. We first derive the Bayesian sampling plan (BSP) for exponential distributions based on Type-II censored samples in a general loss function. For the conjugate prior with quadratic loss function, an explicit expression for the Bayes decision function is derived. Using the property of monotonicity of the Bayes decision function, a new Bayesian sampling plan modified by the curtailment procedure, called a CBSP, is proposed. It is shown that the risk of CBSP is less than or equal to that of BSP. Comparisons among some existing BSPs and the proposed CBSP are given. Monte Carlo simulations are conducted, and numerical results indicate that the CBSP outperforms those early existing sampling plans if the time loss is considered in the loss function.  相似文献   

14.
In this paper, a generalization of inverted exponential distribution is considered as a lifetime model [A.M. Abouammoh and A.M. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Statist. Comput. Simul. 79(11) (2009), pp. 1301–1315]. Its reliability characteristics and important distributional properties are discussed. Maximum likelihood estimation of the two parameters involved along with reliability and failure rate functions are derived. The method of least square estimation of parameters is also studied here. In view of cost and time constraints, type II progressively right censored sampling scheme has been used. For illustration of the performance of the estimates, a Monte Carlo simulation study is carried out. Finally, a real data example is given to show the practical applications of the paper.  相似文献   

15.

Recently, exact confidence bounds and exact likelihood inference have been developed based on hybrid censored samples by Chen and Bhattacharyya [Chen, S. and Bhattacharyya, G.K. (1998). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in StatisticsTheory and Methods, 17, 1857–1870.], Childs et al. [Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319–330.], and Chandrasekar et al. [Chandrasekar, B., Childs, A. and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Research Logistics, 51, 994–1004.] for the case of the exponential distribution. In this article, we propose an unified hybrid censoring scheme (HCS) which includes many cases considered earlier as special cases. We then derive the exact distribution of the maximum likelihood estimator as well as exact confidence intervals for the mean of the exponential distribution under this general unified HCS. Finally, we present some examples to illustrate all the methods of inference developed here.  相似文献   

16.
Received: August 14, 2000; revised version: April 23, 2001  相似文献   

17.
For the conventional type-II hybrid censoring scheme (HCS) in Childs et al., a Bayesian variable sampling plan among the class of the maximum likelihood estimators was derived by Lin et al. under the loss function, which does not include the cost of experimental time. Instead of taking the conventional type-II hybrid censoring scheme, a persuasive argument leads to taking the modified type-II hybrid censoring scheme (MHCS) if the cost of experimental time is included in the loss function. In this article, we apply the decision-theoretic approach for the concerned acceptance sampling. With the type-II MHCS, based on a sufficient statistics, the optimal Bayesian sampling plan is derived under a general loss function. Furthermore, for the conjugate prior distribution, the closed-form formula of the Bayes decision rule can be obtained under the quadratic decision loss. Numerical study is given to demonstrate the performance of the proposed Bayesian sampling plan.  相似文献   

18.
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts.  相似文献   

19.
ABSTRACT

Distributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics.  相似文献   

20.
In this note explicit expressions are given for the maximum likelihood estimators of the parameters of the two-parameter exponential distribution, when a doubly censored sample is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号