首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution-free control charts gained momentum in recent years as they are more efficient in detecting a shift when there is a lack of information regarding the underlying process distribution. However, a distribution-free control chart for monitoring the process location often requires information on the in-control process median. This is somewhat challenging because, in practice, any information on the location parameter might not be known in advance and estimation of the parameter is therefore required. In view of this, a time-weighted control chart, labelled as the Generally Weighted Moving Average (GWMA) exceedance (EX) chart (in short GWMA-EX chart), is proposed for detection of a shift in the unknown process location; this chart is based on exceedance statistic when there is no information available on the process distribution. An extensive performance analysis shows that the proposed GWMA-EX control chart is, in many cases, better than its contenders.  相似文献   

2.
Distribution-free (nonparametric) control charts can be useful to the quality practitioner when the underlying distribution is not known. A Phase II nonparametric cumulative sum (CUSUM) chart based on the exceedance statistics, called the exceedance CUSUM chart, is proposed here for detecting a shift in the unknown location parameter of a continuous distribution. The exceedance statistics can be more efficient than rank-based methods when the underlying distribution is heavy-tailed and/or right-skewed, which may be the case in some applications, particularly with certain lifetime data. Moreover, exceedance statistics can save testing time and resources as they can be applied as soon as a certain order statistic of the reference sample is available. Guidelines and recommendations are provided for the chart's design parameters along with an illustrative example. The in- and out-of-control performances of the chart are studied through extensive simulations on the basis of the average run-length (ARL), the standard deviation of run-length (SDRL), the median run-length (MDRL), and some percentiles of run-length. Further, a comparison with a number of existing control charts, including the parametric CUSUM chart and a recent nonparametric CUSUM chart based on the Wilcoxon rank-sum statistic, called the rank-sum CUSUM chart, is made. It is seen that the exceedance CUSUM chart performs well in many cases and thus can be a useful alternative chart in practice. A summary and some concluding remarks are given.  相似文献   

3.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

4.
This paper develops a Bayesian control chart for the percentiles of the Weibull distribution, when both its in‐control and out‐of‐control parameters are unknown. The Bayesian approach enhances parameter estimates for small sample sizes that occur when monitoring rare events such as in high‐reliability applications. The chart monitors the parameters of the Weibull distribution directly, instead of transforming the data as most Weibull‐based charts do in order to meet normality assumption. The chart uses accumulated knowledge resulting from the likelihood of the current sample combined with the information given by both the initial prior knowledge and all the past samples. The chart is adapting because its control limits change (e.g. narrow) during Phase I. An example is presented and good average run length properties are demonstrated.  相似文献   

5.
We consider a novel univariate non parametric cumulative sum (CUSUM) control chart for detecting the small shifts in the mean of a process, where the nominal value of the mean is unknown but some historical data are available. This chart is established based on the Mann–Whitney statistic as well as the change-point model, where any assumption for the underlying distribution of the process is not required. The performance comparisons based on simulations show that the proposed control chart is slightly more effective than some other related non parametric control charts.  相似文献   

6.
Nonparametric control chart is useful when the underlying distribution is unknown, or is not likely to be normal. In this article, we provide a sequential rank-based nonparametric adaptive EWMA (NAE) control chart for detecting the persistent shift in the location parameter. This NAE chart is a self-starting scheme and thus can be used to monitor processes at the start-up stages rather than waiting for the accumulation of sufficiently large calibration samples. Moreover, we do not require any prior knowledge of the underlying distribution, and to prespecify any tuning parameter either. A Markov chain model is suggested to calibrate the run-length distribution of NAE, which is shown to have approximate tail probability as a geometric distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitude of shifts. A real-data example from manufacturing shows that it performs quite well in practical applications.  相似文献   

7.
Residual control charts are frequently used for monitoring autocorrelated processes. In the design of a residual control chart, values of the true process parameters are often estimated from a reference sample of in-control observations by using least squares (LS) estimators. We propose a robust control chart for autocorrelated data by using Modified Maximum Likelihood (MML) estimators in constructing a residual control chart. Average run length (ARL) is simulated for the proposed chart when the underlying process is AR(1). The results show the superiority of the new chart under several situations. Moreover, the chart is robust to plausible deviations from assumed distribution of errors.  相似文献   

8.
In this article, we provide a sequential rank-based dual nonparametric CUSUM (DNC) control chart for detecting arbitrary magnitude of shifts in the location parameter. It is a self-starting scheme and thus can be used to monitor processes at the start-up stages. Moreover, we do not require any prior knowledge of the underlying distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitudes of shifts. An illustrative example is given to introduce the implementation of our proposed DNC control chart. It is easy to construct and fast to compute.  相似文献   

9.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

10.
11.
ABSTRACT

In this paper, we propose a control chart to monitor the Weibull shape parameter where the observations are censored due to competing risks. We assume that the failure occurs due to two competing risks that are independent and follow Weibull distribution with different shape and scale parameters. The control charts are proposed to monitor one or both of the shape parameters of competing risk distributions and established based on the conditional expected values. The proposed control chart for both shape parameters is used in certain situations and allows to monitor both shape parameters in only one chart. The control limits depend on the sample size, number of failures due to each risk and the desired stable average run length (ARL). We also consider the estimation problem of the target parameters when the Phase I sample is incomplete. We assumed that some of the products that fail during the life testing have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the expectation-maximization (EM) algorithm is proposed to estimate the parameters. For both cases, with and without masking, the behaviour of ARLs of charts is studied through the numerical methods. The influence of masking on the performance of proposed charts is also studied through a simulation study. An example illustrates the applicability of the proposed charts.  相似文献   

12.
In this paper, an attribute control chart under repetitive group sampling is designed for monitoring the production process where the lifetime of the product is considered as quality of the product. We assume that the lifetime follows the Pareto distribution of second kind with known shape parameter. The performance of the proposed chart is evaluated by average run length. The control limits coefficients as well as the repetitive group sampling parameter such as sample size are determined such that the in-control average run length is as close as to the specified average run length. Out-of-control average run length is also reported for different shift constants with corresponding optimal parameters. In addition, performance of proposed control chart is compared with the performance of existing chart. An economical designing of proposed control chart is also discussed.  相似文献   

13.
Statistical control charts are often used in industry to monitor processes in the interests of quality improvement. Such charts assume independence and normality of the control statistic, but these assumptions are often violated in practice. To better capture the true shape of the underlying distribution of the control statistic, we utilize the g-and-k distributions to estimate probability limits, the true ARL, and the error in confidence that arises from incorrectly assuming normality. A sensitivity assessment reveals that the extent of error in confidence associated with control chart decision-making procedures increases more rapidly as the distribution becomes more skewed or as the tails of the distribution become longer than those of the normal distribution. These methods are illustrated using both a frequentist and computational Bayesian approach to estimate the g-and-k parameters in two different practical applications. The Bayesian approach is appealing because it can account for prior knowledge in the estimation procedure and yields posterior distributions of parameters of interest such as control limits.  相似文献   

14.
Traditional control charts assume independence of observations obtained from the monitored process. However, if the observations are autocorrelated, these charts often do not perform as intended by the design requirements. Recently, several control charts have been proposed to deal with autocorrelated observations. The residual chart, modified Shewhart chart, EWMAST chart, and ARMA chart are such charts widely used for monitoring the occurrence of assignable causes in a process when the process exhibits inherent autocorrelation. Besides autocorrelation, one other issue is the unknown values of true process parameters to be used in the control chart design, which are often estimated from a reference sample of in-control observations. Performances of the above-mentioned control charts for autocorrelated processes are significantly affected by the sample size used in a Phase I study to estimate the control chart parameters. In this study, we investigate the effect of Phase I sample size on the run length performance of these four charts for monitoring the changes in the mean of an autocorrelated process, namely an AR(1) process. A discussion of the practical implications of the results and suggestions on the sample size requirements for effective process monitoring are provided.  相似文献   

15.
The standard multivariate exponentially weighted moving average (MEWMA) control chart with a constant smoothing parameter or diagonal matrix is based on the assumption that the samples obey standard normal distribution. With improvements in manufacturing quality and product complexity, there is always correlativity among quality characteristics, and samples will not always obey standard normal distribution. Considering the correlativity among quality characteristics, a new modified general MEWMA (GEWMA) control chart is proposed, and its performance is analyzed. Based on the Particle Swarm Optimization (PSO) algorithm, a smoothing matrix optimized under certain conditions is selected and applied to a sample analysis. As a result of the parameter combination chosen by PSO, the statistic function of the GEWMA control chart is better than that of the full matrix MEWMA (FEWMA) control chart.  相似文献   

16.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature.  相似文献   

17.
This paper proposes a semi-parametric modelling and estimating method for analysing censored survival data. The proposed method uses the empirical likelihood function to describe the information in data, and formulates estimating equations to incorporate knowledge of the underlying distribution and regression structure. The method is more flexible than the traditional methods such as the parametric maximum likelihood estimation (MLE), Cox's (1972) proportional hazards model, accelerated life test model, quasi-likelihood (Wedderburn, 1974) and generalized estimating equations (Liang & Zeger, 1986). This paper shows the existence and uniqueness of the proposed semi-parametric maximum likelihood estimates (SMLE) with estimating equations. The method is validated with known cases studied in the literature. Several finite sample simulation and large sample efficiency studies indicate that when the sample size is larger than 100 the SMLE is compatible with the parametric MLE; and in all case studies, the SMLE is about 15% better than the parametric MLE with a mis-specified underlying distribution.  相似文献   

18.
Control charts have been popularly used as a user-friendly yet technically sophisticated tool to monitor whether a process is in statistical control or not. These charts are basically constructed under the normality assumption. But in many practical situations in real life this normality assumption may be violated. One such non-normal situation is to monitor the process variability from a skewed parent distribution where we propose the use of a Maxwell control chart. We introduce a pivotal quantity for the scale parameter of the Maxwell distribution which follows a gamma distribution. Probability limits and L-sigma limits are studied along with performance measure based on average run length and power curve. To avoid the complexity of future calculations for practitioners, factors for constructing control chart for monitoring the Maxwell parameter are given for different sample sizes and for different false alarm rate. We also provide simulated data to illustrate the Maxwell control chart. Finally, a real life example has been given to show the importance of such a control chart.  相似文献   

19.
In this study, using maximum likelihood estimation, a considerably effective change point model is proposed for the generalized variance control chart in which the required statistics are calculated with its distributional properties. The procedure, when used with generalized variance control charts, would be helpful for practitioners both controlling the multivariate process dispersion and detecting the time of the change in variance-covariance matrix of a process. The procedure starts after the chart issues a signal. Several structural changes for the variance-covariance matrix are considered and the precision and the accuracy of the proposed method is discussed.  相似文献   

20.
Owing to the extreme quantiles involved, standard control charts are very sensitive to the effects of parameter estimation and non-normality. More general parametric charts have been devised to deal with the latter complication and corrections have been derived to compensate for the estimation step, both under normal and parametric models. The resulting procedures offer a satisfactory solution over a broad range of underlying distributions. However, situations do occur where even such a large model is inadequate and nothing remains but to consider non- parametric charts. In principle, these form ideal solutions, but the problem is that huge sample sizes are required for the estimation step. Otherwise the resulting stochastic error is so large that the chart is very unstable, a disadvantage that seems to outweigh the advantage of avoiding the model error from the parametric case. Here we analyse under what conditions non-parametric charts actually become feasible alternatives for their parametric counterparts. In particular, corrected versions are suggested for which a possible change point is reached at sample sizes that are markedly less huge (but still larger than the customary range). These corrections serve to control the behaviour during in-control (markedly wrong outcomes of the estimates only occur sufficiently rarely). The price for this protection will clearly be some loss of detection power during out-of-control. A change point comes in view as soon as this loss can be made sufficiently small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号