首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The author presents three examples of a Markov process taking values in an infinite-dimensional state space and analyzes the sample path behaviour using the theory of Dirichlet forms.  相似文献   

2.
We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 509–516] for density estimation. Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of Gaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities that are either continuous or piecewise continuous.  相似文献   

3.
Summary.  We consider non-stationary spatiotemporal modelling in an investigation into karst water levels in western Hungary. A strong feature of the data set is the extraction of large amounts of water from mines, which caused the water levels to reduce until about 1990 when the mining ceased, and then the levels increased quickly. We discuss some traditional hydrogeological models which might be considered to be appropriate for this situation, and various alternative stochastic models. In particular, a separable space–time covariance model is proposed which is then deformed in time to account for the non-stationary nature of the lagged correlations between sites. Suitable covariance functions are investigated and then the models are fitted by using weighted least squares and cross-validation. Forecasting and prediction are carried out by using spatiotemporal kriging. We assess the performance of the method with one-step-ahead forecasting and make comparisons with naïve estimators. We also consider spatiotemporal prediction at a set of new sites. The new model performs favourably compared with the deterministic model and the naïve estimators, and the deformation by time shifting is worthwhile.  相似文献   

4.
The Dirichlet process has been used extensively in Bayesian non parametric modeling, and has proven to be very useful. In particular, mixed models with Dirichlet process random effects have been used in modeling many types of data and can often outperform their normal random effect counterparts. Here we examine the linear mixed model with Dirichlet process random effects from a classical view, and derive the best linear unbiased estimator (BLUE) of the fixed effects. We are also able to calculate the resulting covariance matrix and find that the covariance is directly related to the precision parameter of the Dirichlet process, giving a new interpretation of this parameter. We also characterize the relationship between the BLUE and the ordinary least-squares (OLS) estimator and show how confidence intervals can be approximated.  相似文献   

5.
When the data has been collected regularly over time and irregularly over space, it is difficult to impose an explicit auto-regressive structure over the space as it is over time. We study a phenomenon on a number of fixed locations. On each location the process forms an auto-regressive time series. The second-order dependence over space is reflected by the covariance matrix of the noise process, which is ‘white’ in time but not over the space. We consider the asymptotic properties of our inference methods, when the number of recordings in time only tends to infinity.  相似文献   

6.
Abstract: The authors consider a class of models for spatio‐temporal processes based on convolving independent processes with a discrete kernel that is represented by a lower triangular matrix. They study two families of models. In the first one, spatial Gaussian processes with isotropic correlations are convoluted with a kernel that provides temporal dependencies. In the second family, AR(p) processes are convoluted with a kernel providing spatial interactions. The covariance structures associated with these two families are quite rich. Their covariance functions that are stationary and separable in space and time as well as time dependent nonseparable and nonisotropic ones.  相似文献   

7.
Multivariate associated kernel estimators, which depend on both target point and bandwidth matrix, are appropriate for distributions with partially or totally bounded supports and generalize the classical ones such as the Gaussian. Previous studies on multivariate associated kernels have been restricted to products of univariate associated kernels, also considered having diagonal bandwidth matrices. However, it has been shown in classical cases that, for certain forms of target density such as multimodal ones, the use of full bandwidth matrices offers the potential for significantly improved density estimation. In this paper, general associated kernel estimators with correlation structure are introduced. Asymptotic properties of these estimators are presented; in particular, the boundary bias is investigated. Generalized bivariate beta kernels are handled in more details. The associated kernel with a correlation structure is built with a variant of the mode-dispersion method and two families of bandwidth matrices are discussed using the least squared cross validation method. Simulation studies are done. In the particular situation of bivariate beta kernels, a very good performance of associated kernel estimators with correlation structure is observed compared to the diagonal case. Finally, an illustration on a real dataset of paired rates in a framework of political elections is presented.  相似文献   

8.
We develop in this paper three multiple-try blocking schemes for Bayesian analysis of nonlinear and non-Gaussian state space models. To reduce the correlations between successive iterates and to avoid getting trapped in a local maximum, we construct Markov chains by drawing state variables in blocks with multiple trial points. The first and second methods adopt autoregressive and independent kernels to produce the trial points, while the third method uses samples along suitable directions. Using the time series structure of the state space models, the three sampling schemes can be implemented efficiently. In our multimodal examples, the three multiple-try samplers are able to generate the desired posterior sample, whereas existing methods fail to do so.  相似文献   

9.
We obtain a generalization of the Chebyshev's inequality for random elements taking values in a separable Hilbert space with estimated mean and covariance.  相似文献   

10.
Abstract.  We consider classification of the realization of a multivariate spatial–temporal Gaussian random field into one of two populations with different regression mean models and factorized covariance matrices. Unknown means and common feature vector covariance matrix are estimated from training samples with observations correlated in space and time, assuming spatial–temporal correlations to be known. We present the first-order asymptotic expansion of the expected error rate associated with a linear plug-in discriminant function. Our results are applied to ecological data collected from the Lithuanian Economic Zone in the Baltic Sea.  相似文献   

11.
The curve of correlation is a measure of local correlation between two random variables X and Y at the point X = x of the support of this variable. This article studies this local measure using the theory of time series for bivariate and univariate stationary stochastic process. We suggest local polynomial estimators for time series observing their consistency both theoretically and through simulations. For this, different sizes of series, bandwidths, and kernels, besides lags and models’ configurations were used. Applications have also been made using the daily returns of two financial series.  相似文献   

12.
Max-stable processes have proved to be useful for the statistical modeling of spatial extremes. For statistical inference it is often assumed that there is no temporal dependence; i.e., that the observations at spatial locations are independent in time. In a first approach we construct max-stable space–time processes as limits of rescaled pointwise maxima of independent Gaussian processes, where the space–time covariance functions satisfy weak regularity conditions. This leads to so-called Brown–Resnick processes. In a second approach, we extend Smith’s storm profile model to a space–time setting. We provide explicit expressions for the bivariate distribution functions, which are equal under appropriate choice of the parameters. We also show how the space–time covariance function of the underlying Gaussian process can be interpreted in terms of the tail dependence function in the limiting max-stable space–time process.  相似文献   

13.
There has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process, and derive the conditional Laplace transform of the FIWSV model in order to obtain a closed form expression of moments. A two-step procedure is used, namely estimating the parameter of fractional integration via the local Whittle estimator in the first step, and estimating the remaining parameters via the generalized method of moments in the second step. Monte Carlo results for the procedure show a reasonable performance in finite samples. The empirical results for the S&P 500 and FTSE 100 indexes show that the data favor the new FIWSV process rather than the one-factor and two-factor models of the Wishart autoregressive process for the covariance structure.  相似文献   

14.
文章采用泰尔指数法对我国研发投入要素的区域差异进行了研究,并采用探索性空间数据分析法、时空跃迁法对我国研发投入要素的时空演化特征进行了深入分析。结果表明:我国研发经费和研发人员的区域差异具有不同的发展态势,区域间差异是导致地区总差异的主要因素,区域内中、东部地区差异最大;我国研发投入要素在空间上呈现集聚特征,主要集中在东部沿海地区,并且这种集聚趋势在不断增强;我国研发投入在空间分布上呈现"集聚"与"分异"并存,且以低-低水平"集聚"为主要时空演化特征;我国研发投入的局部空间结构稳定性较强,具有高度的路径锁定特征。  相似文献   

15.
Kernel density estimation for multivariate, circular data has been formulated only when the sample space is the sphere, but theory for the torus would also be useful. For data lying on a d-dimensional torus (d?1), we discuss kernel estimation of a density, its mixed partial derivatives, and their squared functionals. We introduce a specific class of product kernels whose order is suitably defined in such a way to obtain L2-risk formulas whose structure can be compared to their Euclidean counterparts. Our kernels are based on circular densities; however, we also discuss smaller bias estimation involving negative kernels which are functions of circular densities. Practical rules for selecting the smoothing degree, based on cross-validation, bootstrap and plug-in ideas are derived. Moreover, we provide specific results on the use of kernels based on the von Mises density. Finally, real-data examples and simulation studies illustrate the findings.  相似文献   

16.
ABSTRACT

This work treats non-parametric estimation of multivariate probability mass functions, using multivariate discrete associated kernels. We propose a Bayesian local approach to select the matrix of bandwidths considering the multivariate Dirac Discrete Uniform and the product of binomial kernels, and treating the bandwidths as a diagonal matrix of parameters with some prior distribution. The performances of this approach and the cross-validation method are compared using simulations and real count data sets. The obtained results show that the Bayes local method performs better than cross-validation in terms of integrated squared error.  相似文献   

17.
Separable spatio-temporal covariance models, defined as the product of purely spatial and purely temporal covariance functions, are often used in practice, but frequently they only represent a convenient assumption. On the other hand, non-separable models are receiving a lot of attention, since they are more flexible to handle empirical covariances showed up in applications. Different forms of non-separability for space–time covariance functions have been recently defined in the literature. In this paper, the notion of positive and negative non-separability is further formalized in order to distinguish between pointwise and uniform non-separability. Various well-known non-separable space–time stationary covariance models are analyzed and classified by using the new definition of non-separability. In particular, wide classes of non-separable spatio-temporal covariance functions, able to capture positive and negative non-separability, are proposed and some examples of these classes are given. General results concerning the non-separability of spatial–temporal covariance functions obtained by a linear combination of spatial–temporal covariance functions and some stability properties are also presented. These results can be helpful to generate as well as to select appropriate covariance models for describing space–time data.  相似文献   

18.
Summary.  We propose an adaptive varying-coefficient spatiotemporal model for data that are observed irregularly over space and regularly in time. The model is capable of catching possible non-linearity (both in space and in time) and non-stationarity (in space) by allowing the auto-regressive coefficients to vary with both spatial location and an unknown index variable. We suggest a two-step procedure to estimate both the coefficient functions and the index variable, which is readily implemented and can be computed even for large spatiotemporal data sets. Our theoretical results indicate that, in the presence of the so-called nugget effect, the errors in the estimation may be reduced via the spatial smoothing—the second step in the estimation procedure proposed. The simulation results reinforce this finding. As an illustration, we apply the methodology to a data set of sea level pressure in the North Sea.  相似文献   

19.
Abstract. We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor (BF), requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper‐parameter, which can be set to its minimal value. We show that our approach produces genuine BFs. The implied prior on the concentration matrix of any complete graph is a data‐dependent Wishart distribution, and this in turn guarantees that Markov equivalent graphs are scored with the same marginal likelihood. We specialize our results to the smaller class of Gaussian decomposable undirected graphical models and show that in this case they coincide with those recently obtained using limiting versions of hyper‐inverse Wishart distributions as priors on the graph‐constrained covariance matrices.  相似文献   

20.
We consider inverse problems in Hilbert spaces under correlated Gaussian noise, and use a Bayesian approach to find their regularized solution. We focus on mildly ill-posed inverse problems with fractional noise, using a novel wavelet-based vaguelette–vaguelette approach. It allows us to apply sequence space methods without assuming that all operators are simultaneously diagonalizable. The results are proved for more general bases and covariance operators. Our primary aim is to study posterior contraction rate in such inverse problems over Sobolev classes and compare it to the derived minimax rate. Secondly, we study effect of plugging in a consistent estimator of variances in sequence space on the posterior contraction rate. This result is applied to the problem with error in forward operator. Thirdly, we show that empirical Bayes posterior distribution with a plugged-in maximum marginal likelihood estimator of the prior scale contracts at the optimal rate, adaptively, in the minimax sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号