首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A typical problem in optimal design theory is finding an experimental design that is optimal with respect to some criteria in a class of designs. The most popular criteria include the A- and D-criteria. Regular graph designs occur in many optimality results, and if the number of blocks is large enough, an A-optimal (or D-optimal) design is among them (if any exist). To explore the landscape of designs with a large number of blocks, we introduce extensions of regular graph designs. These are constructed by adding the blocks of a balanced incomplete block design repeatedly to the original design. We present the results of an exact computer search for the best regular graph designs and the best extended regular graph designs with up to 20 treatments v, block size \(k \le 10\) and replication r \(\le 10\) and \(r(k-1)-(v-1)\lfloor r(k-1)/(v-1)\rfloor \le 9\).  相似文献   

2.
We find optimal designs for linear models using a novel algorithm that iteratively combines a semidefinite programming (SDP) approach with adaptive grid techniques. The proposed algorithm is also adapted to find locally optimal designs for nonlinear models. The search space is first discretized, and SDP is applied to find the optimal design based on the initial grid. The points in the next grid set are points that maximize the dispersion function of the SDP-generated optimal design using nonlinear programming. The procedure is repeated until a user-specified stopping rule is reached. The proposed algorithm is broadly applicable, and we demonstrate its flexibility using (i) models with one or more variables and (ii) differentiable design criteria, such as A-, D-optimality, and non-differentiable criterion like E-optimality, including the mathematically more challenging case when the minimum eigenvalue of the information matrix of the optimal design has geometric multiplicity larger than 1. Our algorithm is computationally efficient because it is based on mathematical programming tools and so optimality is assured at each stage; it also exploits the convexity of the problems whenever possible. Using several linear and nonlinear models with one or more factors, we show the proposed algorithm can efficiently find optimal designs.  相似文献   

3.
In the literature, different optimality criteria have been considered for model identification. Most of the proposals assume the normal distribution for the response variable and thus they provide optimality criteria for discriminating between regression models. In this paper, a max–min approach is followed to discriminate among competing statistical models (i.e., probability distribution families). More specifically, k different statistical models (plausible for the data) are embedded in a more general model, which includes them as particular cases. The proposed optimal design maximizes the minimum KL-efficiency to discriminate between each rival model and the extended one. An equivalence theorem is proved and an algorithm is derived from it, which is useful to compute max–min KL-efficiency designs. Finally, the algorithm is run on two illustrative examples.  相似文献   

4.
Computer experiments using deterministic simulators are sometimes used to replace or supplement physical system experiments. This paper compares designs for an initial computer simulator experiment based on empirical prediction accuracy; it recommends designs for producing accurate predictions. The basis for the majority of the designs compared is the integrated mean squared prediction error (IMSPE) that is computed assuming a Gaussian process model with a Gaussian correlation function. Designs that minimize the IMSPE with respect to a fixed set of correlation parameters as well as designs that minimize a weighted IMSPE over the correlation parameters are studied. These IMSPE-based designs are compared with three widely-used space-filling designs. The designs are used to predict test surfaces representing a range of stationary and non-stationary functions. For the test conditions examined in this paper, the designs constructed under IMSPE-based criteria are shown to outperform space-filling Latin hypercube designs and maximum projection designs when predicting smooth functions of stationary appearance, while space-filling and maximum projection designs are superior for test functions that exhibit strong non-stationarity.  相似文献   

5.
Let X be a N(μ, σ 2) distributed characteristic with unknown σ. We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.  相似文献   

6.
Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ). Typically, ST involves introducing an auxiliary variable k taking values in a finite subset of [0,1] and indexing a set of tempered distributions, say π k (θ) π(θ) k . In this case, small values of k encourage better mixing, but samples from π are only obtained when the joint chain for (θ,k) reaches k=1. However, the entire chain can be used to estimate expectations under π of functions of interest, provided that importance sampling (IS) weights are calculated. Unfortunately this method, which we call importance tempering (IT), can disappoint. This is partly because the most immediately obvious implementation is naïve and can lead to high variance estimators. We derive a new optimal method for combining multiple IS estimators and prove that the resulting estimator has a highly desirable property related to the notion of effective sample size. We briefly report on the success of the optimal combination in two modelling scenarios requiring reversible-jump MCMC, where the naïve approach fails.  相似文献   

7.
We propose a novel Bayesian analysis of the p-variate skew-t model, providing a new parameterization, a set of non-informative priors and a sampler specifically designed to explore the posterior density of the model parameters. Extensions, such as the multivariate regression model with skewed errors and the stochastic frontiers model, are easily accommodated. A novelty introduced in the paper is given by the extension of the bivariate skew-normal model given in Liseo and Parisi (2013) to a more realistic p-variate skew-t model. We also introduce the R package mvst, which produces a posterior sample for the parameters of a multivariate skew-t model.  相似文献   

8.
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter \(\lambda _T\), for each T, is not a straightforward task. Additionally, little prior information for \(\lambda _T\) is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for \(\lambda _T\). We study the behaviour of each approach using a simulated reference example as well as two real-life examples.  相似文献   

9.
Mediation analysis often requires larger sample sizes than main effect analysis to achieve the same statistical power. Combining results across similar trials may be the only practical option for increasing statistical power for mediation analysis in some situations. In this paper, we propose a method to estimate: (1) marginal means for mediation path a, the relation of the independent variable to the mediator; (2) marginal means for path b, the relation of the mediator to the outcome, across multiple trials; and (3) the between-trial level variance–covariance matrix based on a bivariate normal distribution. We present the statistical theory and an R computer program to combine regression coefficients from multiple trials to estimate a combined mediated effect and confidence interval under a random effects model. Values of coefficients a and b, along with their standard errors from each trial are the input for the method. This marginal likelihood based approach with Monte Carlo confidence intervals provides more accurate inference than the standard meta-analytic approach. We discuss computational issues, apply the method to two real-data examples and make recommendations for the use of the method in different settings.  相似文献   

10.
This paper discusses the contribution of Cerioli et al. (Stat Methods Appl, 2018), where robust monitoring based on high breakdown point estimators is proposed for multivariate data. The results follow years of development in robust diagnostic techniques. We discuss the issues of extending data monitoring to other models with complex structure, e.g. factor analysis, mixed linear models for which S and MM-estimators exist or deviating data cells. We emphasise the importance of robust testing that is often overlooked despite robust tests being readily available once S and MM-estimators have been defined. We mention open questions like out-of-sample inference or big data issues that would benefit from monitoring.  相似文献   

11.
Let \({\{X_n, n\geq 1\}}\) be a sequence of independent and identically distributed non-degenerated random variables with common cumulative distribution function F. Suppose X 1 is concentrated on 0, 1, . . . , N ≤ ∞ and P(X 1 = 1) > 0. Let \({X_{U_w(n)}}\) be the n-th upper weak record value. In this paper we show that for any fixed m ≥ 2, X 1 has Geometric distribution if and only if \({X_{U_{w}(m)}\mathop=\limits^d X_1+\cdots+X_m ,}\) where \({\underline{\underline{d}}}\) denotes equality in distribution. Our result is a generalization of the case m = 2 obtained by Ahsanullah (J Stat Theory Appl 8(1):5–16, 2009).  相似文献   

12.
In many applications, the cumulative distribution function (cdf) \(F_{Q_N}\) of a positively weighted sum of N i.i.d. chi-squared random variables \(Q_N\) is required. Although there is no known closed-form solution for \(F_{Q_N}\), there are many good approximations. When computational efficiency is not an issue, Imhof’s method provides a good solution. However, when both the accuracy of the approximation and the speed of its computation are a concern, there is no clear preferred choice. Previous comparisons between approximate methods could be considered insufficient. Furthermore, in streaming data applications where the computation needs to be both sequential and efficient, only a few of the available methods may be suitable. Streaming data problems are becoming ubiquitous and provide the motivation for this paper. We develop a framework to enable a much more extensive comparison between approximate methods for computing the cdf of weighted sums of an arbitrary random variable. Utilising this framework, a new and comprehensive analysis of four efficient approximate methods for computing \(F_{Q_N}\) is performed. This analysis procedure is much more thorough and statistically valid than previous approaches described in the literature. A surprising result of this analysis is that the accuracy of these approximate methods increases with N.  相似文献   

13.
We develop a new robust stopping criterion for partial least squares regression (PLSR) component construction, characterized by a high level of stability. This new criterion is universal since it is suitable both for PLSR and extensions to generalized linear regression (PLSGLR). The criterion is based on a non-parametric bootstrap technique and must be computed algorithmically. It allows the testing of each successive component at a preset significance level \(\alpha \). In order to assess its performance and robustness with respect to various noise levels, we perform dataset simulations in which there is a preset and known number of components. These simulations are carried out for datasets characterized both by \(n>p\), with n the number of subjects and p the number of covariates, as well as for \(n<p\). We then use t-tests to compare the predictive performance of our approach with other common criteria. The stability property is in particular tested through re-sampling processes on a real allelotyping dataset. An important additional conclusion is that this new criterion gives globally better predictive performances than existing ones in both the PLSR and PLSGLR (logistic and poisson) frameworks.  相似文献   

14.
The optimality of two-factor experimental designs is studied in the dual senses of estimating contrasts in the parameters for each of the factors. The outline of comparison employed allows one to judge the performance of different designs for estimating contrasts of one set of parameters directly with the performance of the complementary set without going through a common intermediary step of considering all the parameters. The results hold for a wide class of optimality criteria (not merely D-, A- and E-optimality), which must satisfy a functional equation obtained in connection with our method. Also we investigate the optimality of row–column designs which satisfy an ‘adjusted orthogonality’ condition. Our point of departure is the paper by Shah, Raghavarao and Khatri (1976) and that of Mitchell and John (1977).  相似文献   

15.
Methods to perform regression on compositional covariates have recently been proposed using isometric log-ratios (ilr) representation of compositional parts. This approach consists of first applying standard regression on ilr coordinates and second, transforming the estimated ilr coefficients into their contrast log-ratio counterparts. This gives easy-to-interpret parameters indicating the relative effect of each compositional part. In this work we present an extension of this framework, where compositional covariate effects are allowed to be smooth in the ilr domain. This is achieved by fitting a smooth function over the multidimensional ilr space, using Bayesian P-splines. Smoothness is achieved by assuming random walk priors on spline coefficients in a hierarchical Bayesian framework. The proposed methodology is applied to spatial data from an ecological survey on a gypsum outcrop located in the Emilia Romagna Region, Italy.  相似文献   

16.
The author considers the problem of finding designs insensitive to the presence of an outlier in a treatment-control block design setup for estimating the set of elementary contrasts between the effects of each test treatment and a control treatment. The criterion of robustness suggested by Mandal (1989 Mandal , N. K. ( 1989 ). On robust designs . Cal. Stat. Assoc. Bull. 38 : 115119 . [Google Scholar]) in block design setup for estimating a full set of orthonormal treatment contrasts is adapted. A new class viz. partially balanced treatment incomplete block designs (PBTIBD) is introduced and it is shown that balanced treatment incomplete block designs (BTIBD) and PBTIB designs, under certain conditions, are robust in the previous sense. Such designs are important in the sense that the inference on the treatment contrasts under consideration remain unaffected by the presence of an outlier.  相似文献   

17.
Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However, for datasets where the number of variables p is large the algorithm can become inefficient and computationally expensive. Another method which is popular for high-dimensional data is random forests, a machine learning algorithm which grows trees using a greedy search for the best split points. However, its default implementation does not produce probabilistic estimates or predictions. We propose an alternative fitting algorithm for BART called BART-BMA, which uses Bayesian model averaging and a greedy search algorithm to obtain a posterior distribution more efficiently than BART for datasets with large p. BART-BMA incorporates elements of both BART and random forests to offer a model-based algorithm which can deal with high-dimensional data. We have found that BART-BMA can be run in a reasonable time on a standard laptop for the “small n large p” scenario which is common in many areas of bioinformatics. We showcase this method using simulated data and data from two real proteomic experiments, one to distinguish between patients with cardiovascular disease and controls and another to classify aggressive from non-aggressive prostate cancer. We compare our results to their main competitors. Open source code written in R and Rcpp to run BART-BMA can be found at: https://github.com/BelindaHernandez/BART-BMA.git.  相似文献   

18.
The r largest order statistics approach is widely used in extreme value analysis because it may use more information from the data than just the block maxima. In practice, the choice of r is critical. If r is too large, bias can occur; if too small, the variance of the estimator can be high. The limiting distribution of the r largest order statistics, denoted by GEV\(_r\), extends that of the block maxima. Two specification tests are proposed to select r sequentially. The first is a score test for the GEV\(_r\) distribution. Due to the special characteristics of the GEV\(_r\) distribution, the classical chi-square asymptotics cannot be used. The simplest approach is to use the parametric bootstrap, which is straightforward to implement but computationally expensive. An alternative fast weighted bootstrap or multiplier procedure is developed for computational efficiency. The second test uses the difference in estimated entropy between the GEV\(_r\) and GEV\(_{r-1}\) models, applied to the r largest order statistics and the \(r-1\) largest order statistics, respectively. The asymptotic distribution of the difference statistic is derived. In a large scale simulation study, both tests held their size and had substantial power to detect various misspecification schemes. A new approach to address the issue of multiple, sequential hypotheses testing is adapted to this setting to control the false discovery rate or familywise error rate. The utility of the procedures is demonstrated with extreme sea level and precipitation data.  相似文献   

19.
The aim of this paper is to study the asymptotic properties of a class of kernel conditional mode estimates whenever functional stationary ergodic data are considered. To be more precise on the matter, in the ergodic data setting, we consider a random elements (XZ) taking values in some semi-metric abstract space \(E\times F\). For a real function \(\varphi \) defined on the space F and \(x\in E\), we consider the conditional mode of the real random variable \(\varphi (Z)\) given the event “\(X=x\)”. While estimating the conditional mode function, say \(\theta _\varphi (x)\), using the well-known kernel estimator, we establish the strong consistency with rate of this estimate uniformly over Vapnik–Chervonenkis classes of functions \(\varphi \). Notice that the ergodic setting offers a more general framework than the usual mixing structure. Two applications to energy data are provided to illustrate some examples of the proposed approach in time series forecasting framework. The first one consists in forecasting the daily peak of electricity demand in France (measured in Giga-Watt). Whereas the second one deals with the short-term forecasting of the electrical energy (measured in Giga-Watt per Hour) that may be consumed over some time intervals that cover the peak demand.  相似文献   

20.
In a mixture experiment, the response depends on the proportions of the mixing components. Canonical models of different degrees and also other models have been suggested to represent the mean response. Optimum designs for estimation of the parameters of the models have been investigated by different authors. In most cases, the optimum design includes the vertex points of the simplex as support points of the design, which are not mixture combinations in the true non-trivial sense. In this paper, optimum designs have been obtained when the experimental region is an ellipsoidal subspace of the entire factor space which does not cover the vertex points of the simplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号