首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为抵御突发灾害对路网造成的破坏性和设施失灵风险,降低系统成本,并快速完成应急救援任务,本文考虑到受灾点物资需求量的不确定和风险对救援系统的影响,采用直升机进行物资运送以规避路径风险。建立了最小化应急物流系统总成本和物资到达需求点总救援时间为双目标的应急物流定位-路径鲁棒优化模型,基于相对鲁棒优化方法处理需求不确定,采用偏差鲁棒优化思想描述设施失灵风险损失,采用遗传算法进行求解。通过对三个算例进行数据仿真实验,证明了相对鲁棒优化方法在处理需求不确定和偏差鲁棒优化方法在处理设施失灵风险方面的有效性,进而为解决应急设施点的开设和救援物资的安全及时准确配送,增强应急物流系统的风险应对能力提供了有效的方法。  相似文献   

2.
This work aims at investigating multi-criteria modeling frameworks for discrete stochastic facility location problems with single sourcing. We assume that demand is stochastic and also that a service level is imposed. This situation is modeled using a set of probabilistic constraints. We also consider a minimum throughput at the facilities to justify opening them. We investigate two paradigms in terms of multi-criteria optimization: vectorial optimization and goal programming. Additionally, we discuss the joint use of objective functions that are relevant in the context of some humanitarian logistics problems. We apply the general modeling frameworks proposed to the so-called stochastic shelter site location problem. This is a problem emerging in the context of preventive disaster management. We test the models proposed using two real benchmark data sets. The results show that considering uncertainty and multiple objectives in the type of facility location problems investigated leads to solutions that may better support decision making.  相似文献   

3.
We consider a manufacturer without any frozen periods in production schedules so that it can dynamically update the schedules as the demand forecast evolves over time until the realization of actual demand. The manufacturer has a fixed production capacity in each production period, which impacts the time to start production as well as the production schedules. We develop a dynamic optimization model to analyze the optimal production schedules under capacity constraint and demand‐forecast updating. To model the evolution of demand forecasts, we use both additive and multiplicative versions of the martingale model of forecast evolution. We first derive expressions for the optimal base stock levels for a single‐product model. We find that manufacturers located near their market bases can realize most of their potential profits (i.e., profit made when the capacity is unlimited) by building a very limited amount of capacity. For moderate demand uncertainty, we also show that it is almost impossible for manufacturers to compensate for the increase in supply–demand mismatches resulting from long delivery lead times by increasing capacity, making lead‐time reduction a better alternative than capacity expansion. We then extend the model to a multi‐product case and derive expressions for the optimal production quantities for each product given a shared capacity constraint. Using a two‐product model, we show that the manufacturer should utilize its capacity more in earlier periods when the demand for both products is more positively correlated.  相似文献   

4.
具有遗憾值约束的鲁棒供应链网络设计模型研究   总被引:1,自引:0,他引:1  
考虑不确定性环境,研究战略层次的供应链网络鲁棒设计问题,目标是设计参数发生摄动时,供应链性能能够保持稳健性。基于鲁棒解的定义,建立从上游供应商选择到下游设施选址-需求分配的供应链网络设计鲁棒优化模型;提出确定遗憾值限定系数上限和下限的方法,允许决策者调节鲁棒水平,选择多种供应链网络结构;通过模型分解与协调,设计了供应链节点配置的禁忌搜索算法。算例的计算结果表明了禁忌搜索算法具有良好的收敛特性,以及在处理大规模问题上的优越性;同时也反映了利用鲁棒优化模型进行供应链网络设计,可以有效规避投资风险。  相似文献   

5.
We consider the problem of defining a strategy consisting of a set of facilities taking into account also the location where they have to be assigned and the time in which they have to be activated. The facilities are evaluated with respect to a set of criteria. The plan has to be devised respecting some constraints related to different aspects of the problem such as precedence restrictions due to the nature of the facilities. Among the constraints, there are some related to the available budget. We consider also the uncertainty related to the performances of the facilities with respect to considered criteria and plurality of stakeholders participating to the decision. The considered problem can be seen as the combination of some prototypical operations research problems: knapsack problem, location problem and project scheduling. Indeed, the basic brick of our model is a variable xilt which takes value 1 if facility i is activated in location l at time t, and 0 otherwise. Due to the conjoint consideration of a location and a time in the decision variables, what we propose can be seen as a general space-time model for operations research problems. We discuss how such a model permits to handle complex problems using several methodologies including multiple attribute value theory and multiobjective optimization. With respect to the latter point, without any loss of the generality, we consider the compromise programming and an interactive methodology based on the Dominance-based Rough Set Approach. We illustrate the application of our model with a simple didactic example.  相似文献   

6.
We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times.  相似文献   

7.
We consider the distribution planning problem in the motion picture industry. This problem involves forecasting theater‐level box office revenues for a given movie and using these forecasts to choose the best locations to screen a movie. We first develop a method that predicts theater‐level box office revenues over time for a given movie as a function of movie attributes and theater characteristics. These estimates are then used by the distributor to choose where to screen the movie. The distributor's location selection problem is modeled as an integer programming‐based optimization model that chooses the location of theaters in order to optimize profits. We tested our methods on realistic box office data and show that it has the potential to significantly improve the distributor's profits. We also develop some insights into why our methods outperform existing practice, which are crucial to their successful practical implementation.  相似文献   

8.
In this paper we study a class of locations models where facilities are not perfectly reliable and failures may be correlated. We analyze problems with Median and Center objectives under complete and incomplete customer information regarding the state of facilities. The goal is to understand how failure probabilities, correlations, availability of information, and problem objective affect the optimal location patterns. In particular, we want to find analytical confirmations for location patterns observed in numerical experiments with network location models. To derive closed-form analytical results the analysis is restricted to a simple (yet classic) setting: a 2-facility problem on a unit segment, with customer demand distributed uniformly over the segment (results can be extended to other demand distributions as well). We derive explicit expressions for facility trajectories as functions of model parameters, obtaining a number of managerial insights. In addition we provide the decomposition of the optimal cost into the closed form components corresponding to the cost of travel, the cost of facility unreliability and the cost of incomplete information. Most of the theoretical insights are confirmed via numerical experiments for models with larger (3–5) number of facilities.  相似文献   

9.
We address the simultaneous determination of pricing, production, and capacity investment decisions by a monopolistic firm in a multi‐period setting under demand uncertainty. We analyze the optimal decision with particular emphasis on the relationship between price and capacity. We consider models that allow for either bi‐directional price changes or models with markdowns only, and in the latter case we prove that capacity and price are strategic substitutes.  相似文献   

10.
We consider a dynamic pricing problem that involves selling a given inventory of a single product over a short, two‐period selling season. There is insufficient time to replenish inventory during this season, hence sales are made entirely from inventory. The demand for the product is a stochastic, nonincreasing function of price. We assume interval uncertainty for demand, that is, knowledge of upper and lower bounds but not a probability distribution, with no correlation between the two periods. We minimize the maximum total regret over the two periods that results from the pricing decisions. We consider a dynamic model where the decision maker chooses the price for each period contingent on the remaining inventory at the beginning of the period, and a static model where the decision maker chooses the prices for both periods at the beginning of the first period. Both models can be solved by a polynomial time algorithm that solves systems of linear inequalities. Our computational study demonstrates that the prices generated by both our models are insensitive to errors in estimating the demand intervals. Our dynamic model outperforms our static model and two classical approaches that do not use demand probability distributions, when evaluated by maximum regret, average relative regret, variability, and risk measures. Further, our dynamic model generates a total expected revenue which closely approximates that of a maximum expected revenue approach which requires demand probability distributions.  相似文献   

11.
We study the problem of locating new facilities for one expanding chain which competes for demand in spatially separated markets where all competing chains use delivered pricing. A new network location model is formulated for profit maximization of the expanding chain assuming that equilibrium prices are set in each market. The cannibalization effect caused by the entrance of the new facilities is integrated in the objective function as a cost to be paid by the expanding chain to the cannibalized facilities. It is shown that the profit of the chain is maximized by locating the new facilities in a set of points which are nodes or iso-marginal delivered cost points (points on the network from which the marginal delivered cost equals the minimum marginal delivered cost from the existing facilities owned by the expanding chain). Then the location problem is reduced to a discrete optimization problem which is formulated as a mixed integer linear program. A sensitivity analysis respect to both the number of new facilities and the cannibalization cost is shown by using an illustrative example with data of the region of Murcia (Spain). Some conclusions are presented.  相似文献   

12.
This work considers the value of the flexibility offered by production facilities that can easily be configured to produce new products. We focus on technical uncertainty as the driver of this value, while prior works focused only on demand uncertainty. Specifically, we evaluate the use of process flexibility in the context of risky new product development in the pharmaceutical industry. Flexibility has value in this setting due to the time required to build dedicated capacity, the finite duration of patent protection, and the probability that the new product will not reach the market due to technical or regulatory reasons. Having flexible capacity generates real options, which enables firms to delay the decision about constructing product‐specific capacity until the technical uncertainty is resolved. In addition, initiating production in a flexible facility can enable the firm to optimize production processes in dedicated facilities. The stochastic dynamic optimization problem is formulated to analyze the optimal capacity and allocation decisions for a flexible facility, using data from existing literature. A solution to this problem is obtained using linear programming. The result of this analysis shows both the value of flexible capacity and the optimal capacity allocation. Due to the substantial costs involved with flexibility in this context, the optimal level of flexible capacity is relatively small, suggesting products be produced for only short periods before initiating construction of dedicated facilities.  相似文献   

13.
We consider a multi‐stage inventory system with stochastic demand and processing capacity constraints at each stage, for both finite‐horizon and infinite‐horizon, discounted‐cost settings. For a class of such systems characterized by having the smallest capacity at the most downstream stage and system utilization above a certain threshold, we identify the structure of the optimal policy, which represents a novel variation of the order‐up‐to policy. We find the explicit functional form of the optimal order‐up‐to levels, and show that they depend (only) on upstream echelon inventories. We establish that, above the threshold utilization, this optimal policy achieves the decomposition of the multidimensional objective cost function for the system into a sum of single‐dimensional convex functions. This decomposition eliminates the curse of dimensionality and allows us to numerically solve the problem. We provide a fast algorithm to determine a (tight) upper bound on this threshold utilization for capacity‐constrained inventory problems with an arbitrary number of stages. We make use of this algorithm to quantify upper bounds on the threshold utilization for three‐, four‐, and five‐stage capacitated systems over a range of model parameters, and discuss insights that emerge.  相似文献   

14.
We consider the problem of managing demand risk in tactical supply chain planning for a particular global consumer electronics company. The company follows a deterministic replenishment‐and‐planning process despite considerable demand uncertainty. As a possible way to formally address uncertainty, we provide two risk measures, “demand‐at‐risk” (DaR) and “inventory‐at‐risk” (IaR) and two linear programming models to help manage demand uncertainty. The first model is deterministic and can be used to allocate the replenishment schedule from the plants among the customers as per the existing process. The other model is stochastic and can be used to determine the “ideal” replenishment request from the plants under demand uncertainty. The gap between the output of the two models as regards requested replenishment and the values of the risk measures can be used by the company to reallocate capacity among different products and to thus manage demand/inventory risk.  相似文献   

15.
A single‐echelon inventory system with continuous review and Poisson demand is considered. There are standard linear holding and backorder costs but no ordering or set‐up costs. We study a change in the lead‐time, which is rather typical in connection with application of a Just‐In‐Time philosophy. Our main focus is a lead‐time decrease but we also consider a lead‐time increase. Due to the lead‐time change, the optimal steady state solution will also, in general, change. We consider the transient problem of minimizing the costs when bringing the system from its original steady state to the new steady state.  相似文献   

16.
Through observations from real life hub networks, we introduce the multimodal hub location and hub network design problem. We approach the hub location problem from a network design perspective. In addition to the location and allocation decisions, we also study the decision on how the hub networks with different possible transportation modes must be designed. In this multimodal hub location and hub network design problem, we jointly consider transportation costs and travel times, which are studied separately in most hub location problems presented in the literature. We allow different transportation modes between hubs and different types of service time promises between origin–destination pairs while designing the hub network in the multimodal problem. We first propose a linear mixed integer programming model for this problem and then derive variants of the problem that might arise in certain applications. The models are enhanced via a set of effective valid inequalities and an efficient heuristic is developed. Computational analyses are presented on the various instances from the Turkish network and CAB data set.  相似文献   

17.
In make‐to‐stock production systems finished goods are produced in anticipation of demand. By contrast, in stockless production systems finished goods are not produced until demand is observed. In this study we investigate the problem of designing a multi‐item manufacturing system, where there is both demand‐ and production‐related uncertainty, so that stockless operation will be optimal for all items. For the problem of interest, we focus on gaining an understanding of the effect of two design variables: (i) manufacturing speed—measured by the average manufacturing rate or, equivalently, the average unit manufacturing time, and (ii) manufacturing consistency—measured by the variation in unit manufacturing times. We establish conditions on these two variables that decision makers can use to design stockless production systems. Managerial implications of the conditions are also discussed.  相似文献   

18.
Coordinated replenishment problems are common in manufacturing and distribution when a family of items shares a common production line, supplier, or a mode of transportation. In these situations the coordination of shared, and often limited, resources across items is economically attractive. This paper describes a mixed‐integer programming formulation and Lagrangian relaxation solution procedure for the single‐family coordinated capacitated lot‐sizing problem with dynamic demand. The problem extends both the multi‐item capacitated dynamic demand lot‐sizing problem and the uncapacitated coordinated dynamic demand lot‐sizing problem. We provide the results of computational experiments investigating the mathematical properties of the formulation and the performance of the Lagrangian procedures. The results indicate the superiority of the dual‐based heuristic over linear programming‐based approaches to the problem. The quality of the Lagrangian heuristic solution improved in most instances with increases in problem size. Heuristic solutions averaged 2.52% above optimal. The procedures were applied to an industry test problem yielding a 22.5% reduction in total costs.  相似文献   

19.
Traditional approaches in inventory control first estimate the demand distribution among a predefined family of distributions based on data fitting of historical demand observations, and then optimize the inventory control using the estimated distributions. These approaches often lead to fragile solutions whenever the preselected family of distributions was inadequate. In this article, we propose a minimax robust model that integrates data fitting and inventory optimization for the single‐item multi‐period periodic review stochastic lot‐sizing problem. In contrast with the standard assumption of given distributions, we assume that histograms are part of the input. The robust model generalizes the Bayesian model, and it can be interpreted as minimizing history‐dependent risk measures. We prove that the optimal inventory control policies of the robust model share the same structure as the traditional stochastic dynamic programming counterpart. In particular, we analyze the robust model based on the chi‐square goodness‐of‐fit test. If demand samples are obtained from a known distribution, the robust model converges to the stochastic model with true distribution under generous conditions. Its effectiveness is also validated by numerical experiments.  相似文献   

20.
我国灾害医学救援主要采用"现场救治"模式,应急医疗移动医院的选址是否合理直接影响救援效率,但各受灾点伤员数量的不确定性增加了决策的困难。本文引入多面体不确定集合刻画伤员数量的不确定性,同时考虑伤员分类及移动医院分型,构建一个以伤员总生存概率最大化为目标的鲁棒选址模型。利用鲁棒优化理论,将模型转化为等价的混合整数规划问题,通过GAMS软件编程并调用CPLEX求解器求解。最后,以四川芦山地震应急医疗救援为例,验证模型和求解方法的可行性和鲁棒性。结果表明,扰动比例和不确定水平对移动医院的选址和伤员的分配方案有显著影响,决策者可根据自己对不确定性风险的偏好程度选择最佳的扰动比例和不确定水平组合,以获得最优的选址分配方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号