首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of estimating hybrid frequency moments of two dimensional data streams. In this model, data is viewed to be organized in a matrix form (A i,j )1≤i,j,≤n . The entries A i,j are updated coordinate-wise, in arbitrary order and possibly multiple times. The updates include both increments and decrements to the current value of A i,j . The hybrid frequency moment F p,q (A) is defined as \(\sum_{j=1}^{n}(\sum_{i=1}^{n}{A_{i,j}}^{p})^{q}\) and is a generalization of the frequency moment of one-dimensional data streams.We present the first \(\tilde{O}(1)\) space algorithm for the problem of estimating F p,q for p∈[0,2] and q∈[0,1] to within an approximation factor of 1±ε. The \(\tilde{O}\) notation hides poly-logarithmic factors in the size of the stream m, the matrix size n and polynomial factors of ε ?1. We also present the first \(\tilde{O}(n^{1-1/q})\) space algorithm for estimating F p,q for p∈[0,2] and q∈(1,2].  相似文献   

2.
Let \(\mathcal{C}\) be a uniform clutter and let A be the incidence matrix of \(\mathcal{C}\). We denote the column vectors of A by v 1,…,v q . Under certain conditions we prove that \(\mathcal{C}\) is vertex critical. If \(\mathcal{C}\) satisfies the max-flow min-cut property, we prove that A diagonalizes over ? to an identity matrix and that v 1,…,v q form a Hilbert basis. We also prove that if \(\mathcal{C}\) has a perfect matching such that \(\mathcal{C}\) has the packing property and its vertex covering number is equal to 2, then A diagonalizes over ? to an identity matrix. If A is a balanced matrix we prove that any regular triangulation of the cone generated by v 1,…,v q is unimodular. Some examples are presented to show that our results only hold for uniform clutters. These results are closely related to certain algebraic properties, such as the normality or torsion-freeness, of blowup algebras of edge ideals and to finitely generated abelian groups. They are also related to the theory of Gröbner bases of toric ideals and to Ehrhart rings.  相似文献   

3.
The largest well predicted subset problem is formulated for comparison of two predicted 3D protein structures from the same sequence. A 3D protein structure is represented by an ordered point set A={a 1,…,a n }, where each a i is a point in 3D space. Given two ordered point sets A={a 1,…,a n } and B={b 1,b 2,…b n } containing n points, and a threshold d, the largest well predicted subset problem is to find the rigid body transformation T for a largest subset B opt of B such that the distance between a i and T(b i ) is at most d for every b i in B opt . A meaningful prediction requires that the size of B opt is at least αn for some constant α (Li et al. in CPM 2008, 2008). We use LWPS(A,B,d,α) to denote the largest well predicted subset problem with meaningful prediction. An (1+δ 1,1?δ 2)-approximation for LWPS(A,B,d,α) is to find a transformation T to bring a subset B′?B of size at least (1?δ 2)|B opt | such that for each b i B′, the Euclidean distance between the two points distance?(a i ,T(b i ))≤(1+δ 1)d. We develop a constant time (1+δ 1,1?δ 2)-approximation algorithm for LWPS(A,B,d,α) for arbitrary positive constants δ 1 and δ 2. To our knowledge, this is the first constant time algorithm in this area. Li et al. (CPM 2008, 2008) showed an $O(n(\log n)^{2}/\delta_{1}^{5})$ time randomized (1+δ 1)-distance approximation algorithm for the largest well predicted subset problem under meaningful prediction. We also study a closely related problem, the bottleneck distance problem, where we are given two ordered point sets A={a 1,…,a n } and B={b 1,b 2,…b n } containing n points and the problem is to find the smallest d opt such that there exists a rigid transformation T with distance(a i ,T(b i ))≤d opt for every point b i B. A (1+δ)-approximation for the bottleneck distance problem is to find a transformation T, such that for each b i B, distance?(a i ,T(b i ))≤(1+δ)d opt , where δ is a constant. For an arbitrary constant δ, we obtain a linear O(n/δ 6) time (1+δ)-algorithm for the bottleneck distance problem. The best known algorithms for both problems require super-linear time (Li et al. in CPM 2008, 2008).  相似文献   

4.
Suppose G is a graph. Two edges e and e′ in G are said to be adjacent if they share a common end vertex, and distance two apart if they are nonadjacent but both are adjacent to a common edge. Let j and k be two positive integers. An L(j,k)-edge-labeling of a graph G is an assignment of nonnegative integers, called labels, to the edges of G such that the difference between labels of any two adjacent edges is at least j, and the difference between labels of any two edges that are distance two apart is at least k. The minimum range of labels over all L(j,k)-edge-labelings of a graph G is called the L(j,k)-edge-labeling number of G, denoted by $\lambda_{j,k}'(G)$ . Let m, j and k be positive integers. An m-circular-L(j,k)-edge-labeling of a graph G is an assignment f from {0,1,…,m?1} to the edges of G such that, for any two edges e and e′, |f(e)?f(e′)| m j if e and e′ are adjacent, and |f(e)?f(e′)| m k if e and e′ are distance two apart, where |a| m =min{a,m?a}. The minimum m such that G has an m-circular-L(j,k)-edge-labeling is called the circular-L(j,k)-edge-labeling number of G, denoted by $\sigma_{j,k}'(G)$ . This paper investigates the L(1,1)-edge-labeling numbers, the L(2,1)-edge-labeling numbers and the circular-L(2,1)-edge-labeling numbers of the hexagonal lattice, the square lattice, the triangular lattice and the strong product of two infinite paths.  相似文献   

5.
Let p and q be positive integers. An L(p,q)-labeling of a graph G with a span s is a labeling of its vertices by integers between 0 and s such that adjacent vertices of G are labeled using colors at least p apart, and vertices having a common neighbor are labeled using colors at least q apart. We denote by λ p,q (G) the least integer k such that G has an L(p,q)-labeling with span k. The maximum average degree of a graph G, denoted by $\operatorname {Mad}(G)$ , is the maximum among the average degrees of its subgraphs (i.e. $\operatorname {Mad}(G) = \max\{\frac{2|E(H)|}{|V(H)|} ; H \subseteq G \}$ ). We consider graphs G with $\operatorname {Mad}(G) < \frac{10}{3}$ , 3 and $\frac{14}{5}$ . These sets of graphs contain planar graphs with girth 5, 6 and 7 respectively. We prove in this paper that every graph G with maximum average degree m and maximum degree Δ has:
  • λ p,q (G)≤(2q?1)Δ+6p+10q?8 if $m < \frac{10}{3}$ and p≥2q.
  • λ p,q (G)≤(2q?1)Δ+4p+14q?9 if $m < \frac{10}{3}$ and 2q>p.
  • λ p,q (G)≤(2q?1)Δ+4p+6q?5 if m<3.
  • λ p,q (G)≤(2q?1)Δ+4p+4q?4 if $m < \frac{14}{5}$ .
  • We give also some refined bounds for specific values of p, q, or Δ. By the way we improve results of Lih and Wang (SIAM J. Discrete Math. 17(2):264–275, 2003).  相似文献   

    6.
    Let n and k be positive integers with n?k≥2. The arrangement graph A n,k is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of A n,k . Let l be any integer with $d_{A_{n,k}}(\mathbf{x},\mathbf{y}) \le l \le \frac{n!}{(n-k)!}-1-d_{A_{n,k}}(\mathbf{y},\mathbf{z})$ . We shall prove the following existance properties of Hamiltonian path: (1)?for n?k≥3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that d R(x,y,z;l)(x,y)=l; (2) for n?k=2 and n≥5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other.  相似文献   

    7.
    Given a graph G and positive integers p,q with pq, the (p,q)-total number $\lambda_{p,q}^{T}(G)$ of G is the width of the smallest range of integers that suffices to label the vertices and the edges of G such that the labels of any two adjacent vertices are at least q apart, the labels of any two adjacent edges are at least q apart, and the difference between the labels of a vertex and its incident edges is at least p. Havet and Yu (Discrete Math 308:496–513, 2008) first introduced this problem and determined the exact value of $\lambda_{p,1}^{T}(K_{n})$ except for even n with p+5≤n≤6p 2?10p+4. Their proof for showing that $\lambda _{p,1}^{T}(K_{n})\leq n+2p-3$ for odd n has some mistakes. In this paper, we prove that if n is odd, then $\lambda_{p}^{T}(K_{n})\leq n+2p-3$ if p=2, p=3, or $4\lfloor\frac{p}{2}\rfloor+3\leq n\leq4p-1$ . And we extend some results that were given in Havet and Yu (Discrete Math 308:496–513, 2008). Beside these, we give a lower bound for $\lambda_{p,q}^{T}(K_{n})$ under the condition that q<p<2q.  相似文献   

    8.
    We investigate the question whether NE can be separated from the reduction closures of tally sets, sparse sets and NP. We show that (1) \(\mathrm{NE}\not\subseteq R^{\mathrm{NP}}_{n^{o(1)}-T}(\mathrm{TALLY})\); (2) \(\mathrm{NE}\not\subseteq R^{SN}_{m}(\mathrm{SPARSE})\); (3) \(\mathrm{NEXP}\not\subseteq \mathrm{P}^{\mathrm{NP}}_{n^{k}-T}/n^{k}\) for all k≥1; and (4) \(\mathrm{NE}\not\subseteq \mathrm{P}_{btt}(\mathrm{NP}\oplus\mathrm{SPARSE})\). Result (3) extends a previous result by Mocas to nonuniform reductions. We also investigate how different an NE-hard set is from an NP-set. We show that for any NP subset A of a many-one-hard set H for NE, there exists another NP subset A′ of H such that A? A and A′?A is not of sub-exponential density.  相似文献   

    9.
    Let \mathbbF(2n+d)q2\mathbb{F}^{(2\nu+\delta)}_{q^{2}} be a (2ν+δ)-dimensional unitary space of \mathbbFq2\mathbb{F}_{q^{2}} , where δ=0 or 1. In this paper we construct a family of inclusion matrices associated with subspaces of \mathbbF(2n+d)q2\mathbb{F}^{(2\nu+\delta)}_{q^{2}} , and exhibit its disjunct property. Moreover, we compare the ratio efficiency of this construction with others, and find it smaller under some conditions.  相似文献   

    10.
    Given real numbers ba>0, an (a,b)-Roman dominating function of a graph G=(V,E) is a function f:V→{0,a,b} such that every vertex v with f(v)=0 has a neighbor u with f(u)=b. An independent/connected/total (a,b)-Roman dominating function is an (a,b)-Roman dominating function f such that {vV:f(v)≠0} induces a subgraph without edges/that is connected/without isolated vertices. For a weight function $w{:} V\to\Bbb{R}$ , the weight of f is w(f)=∑ vV w(v)f(v). The weighted (a,b)-Roman domination number $\gamma^{(a,b)}_{R}(G,w)$ is the minimum weight of an (a,b)-Roman dominating function of G. Similarly, we can define the weighted independent (a,b)-Roman domination number $\gamma^{(a,b)}_{Ri}(G,w)$ . In this paper, we first prove that for any fixed (a,b) the (a,b)-Roman domination and the total/connected/independent (a,b)-Roman domination problems are NP-complete for bipartite graphs. We also show that for any fixed (a,b) the (a,b)-Roman domination and the total/connected/weighted independent (a,b)-Roman domination problems are NP-complete for chordal graphs. We then give linear-time algorithms for the weighted (a,b)-Roman domination problem with ba>0, and the weighted independent (a,b)-Roman domination problem with 2aba>0 on strongly chordal graphs with a strong elimination ordering provided.  相似文献   

    11.
    Let G=(V,E) be a graph. A set of vertices S?V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of $V-\nobreak S$ is adjacent to a vertex in V?S. The total restrained domination number of G, denoted by γ tr (G), is the smallest cardinality of a total restrained dominating set of G. A support vertex of a graph is a vertex of degree at least two which is adjacent to a leaf. We show that $\gamma_{\mathit{tr}}(T)\leq\lfloor\frac{n+2s+\ell-1}{2}\rfloor$ where T is a tree of order n≥3, and s and ? are, respectively, the number of support vertices and leaves of T. We also constructively characterize the trees attaining the aforementioned bound.  相似文献   

    12.
    We study the recently introduced Connected Feedback Vertex Set (CFVS) problem from the view-point of parameterized algorithms. CFVS is the connected variant of the classical Feedback Vertex Set problem and is defined as follows: given a graph G=(V,E) and an integer k, decide whether there exists F?V, |F|??k, such that G[V?F] is a forest and G[F] is connected. We show that Connected Feedback Vertex Set can be solved in time O(2 O(k) n O(1)) on general graphs and in time $O(2^{O(\sqrt{k}\log k)}n^{O(1)})$ on graphs excluding a fixed graph H as a minor. Our result on general undirected graphs uses, as a subroutine, a parameterized algorithm for Group Steiner Tree, a well studied variant of Steiner Tree. We find the algorithm for Group Steiner Tree of independent interest and believe that it could be useful for obtaining parameterized algorithms for other connectivity problems.  相似文献   

    13.
    A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

    14.
    The one-round discrete Voronoi game, with respect to a n-point user set  $\mathcal {U}$ , consists of two players Player 1 (P1) and Player 2 (P2). At first, P1 chooses a set $\mathcal{F}_{1}$ of m facilities following which P2 chooses another set $\mathcal{F}_{2}$ of m facilities, disjoint from  $\mathcal{F}_{1}$ , where m(=O(1)) is a positive constant. The payoff of P2 is defined as the cardinality of the set of points in $\mathcal{U}$ which are closer to a facility in $\mathcal{F}_{2}$ than to every facility in $\mathcal{F}_{1}$ , and the payoff of P1 is the difference between the number of users in $\mathcal{U}$ and the payoff of P2. The objective of both the players in the game is to maximize their respective payoffs. In this paper, we address the case where the points in $\mathcal{U}$ are located along a line. We show that if the sorted order of the points in $\mathcal{U}$ along the line is known, then the optimal strategy of P2, given any placement of facilities by P1, can be computed in O(n) time. We then prove that for m≥2 the optimal strategy of P1 in the one-round discrete Voronoi game, with the users on a line, can be computed in $O(n^{m-\lambda_{m}})$ time, where 0<λ m <1, is a constant depending only on m.  相似文献   

    15.
    An adjacent vertex distinguishing edge coloring of a graph \(G\) is a proper edge coloring of \(G\) such that any pair of adjacent vertices admit different sets of colors. The minimum number of colors required for such a coloring of \(G\) is denoted by \(\chi ^{\prime }_{a}(G)\) . In this paper, we prove that if \(G\) is a planar graph with girth at least 5 and \(G\) is not a 5-cycle, then \(\chi ^{\prime }_{a}(G)\le \Delta +2\) , where \(\Delta \) is the maximum degree of \(G\) . This confirms partially a conjecture in Zhang et al. (Appl Math Lett 15:623–626, 2002).  相似文献   

    16.
    A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

    17.
    We consider a two-stage flexible flow shop problem with a single machine at one stage and m identical machines at the other stage, where the processing times of each job at both stages are identical. The objective is to minimize the makespan. We describe some optimality conditions and show that the problem is NP-hard when m is fixed. Finally, we present an approximation algorithm that has a worst-case performance ratio of $\frac{5}{4}$ for m=2 and $\frac{\sqrt{1+m^{2}}+1+m}{2m}$ for m≥3.  相似文献   

    18.
    The Selective Single-Sink Buy-at-Bulk problem was proposed by Awerbuch and Azar (FOCS 1997). For a long time, the only known non-trivial approach to approximate this problem is the tree-embedding method initiated by Bartal (FOCS 1996). In this paper, we give a thoroughly different approximation approach for the problem with approximation ratio $O(\sqrt{q})$ , where q is the number of source terminals in the problem instance. Our approach is based on a mixed strategy of LP-rounding and the greedy method. When the number q (which is always at most n) is relatively small (say, q=o(log2 n)), our approximation ratio $O(\sqrt{q})$ is better than the currently known best ratio O(logn), where n is the number of vertices in the input graph.  相似文献   

    19.
    A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by V?S is connected. The outer-connected domination number $\widetilde{\gamma}_{c}(G)$ is the minimum size of such a set. We prove that if δ(G)≥2 and diam?(G)≤2, then $\widetilde{\gamma}_{c}(G)\le (n+1)/2$ , and we study the behavior of $\widetilde{\gamma}_{c}(G)$ under an edge addition.  相似文献   

    20.
    We study the problem of maximizing a monotone non-decreasing function \(f\) subject to a matroid constraint. Fisher, Nemhauser and Wolsey have shown that, if \(f\) is submodular, the greedy algorithm will find a solution with value at least \(\frac{1}{2}\) of the optimal value under a general matroid constraint and at least \(1-\frac{1}{e}\) of the optimal value under a uniform matroid \((\mathcal {M} = (X,\mathcal {I})\), \(\mathcal {I} = \{ S \subseteq X: |S| \le k\}\)) constraint. In this paper, we show that the greedy algorithm can find a solution with value at least \(\frac{1}{1+\mu }\) of the optimum value for a general monotone non-decreasing function with a general matroid constraint, where \(\mu = \alpha \), if \(0 \le \alpha \le 1\); \(\mu = \frac{\alpha ^K(1-\alpha ^K)}{K(1-\alpha )}\) if \(\alpha > 1\); here \(\alpha \) is a constant representing the “elemental curvature” of \(f\), and \(K\) is the cardinality of the largest maximal independent sets. We also show that the greedy algorithm can achieve a \(1 - (\frac{\alpha + \cdots + \alpha ^{k-1}}{1+\alpha + \cdots + \alpha ^{k-1}})^k\) approximation under a uniform matroid constraint. Under this unified \(\alpha \)-classification, submodular functions arise as the special case \(0 \le \alpha \le 1\).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号