首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For two positive integers j and k with jk, an L(j,k)-labeling of a graph G is an assignment of nonnegative integers to V(G) such that the difference between labels of adjacent vertices is at least j, and the difference between labels of vertices that are distance two apart is at least k. The span of an L(j,k)-labeling of a graph G is the difference between the maximum and minimum integers used by it. The L(j,k)-labelings-number of G is the minimum span over all L(j,k)-labelings of G. This paper focuses on L(2,1)-labelings-number of the edge-path-replacement G(P k ) of a graph G. Note that G(P 3) is the incidence graph of G. L(2,1)-labelings of the edge-path-replacement G(P 3) of a graph, called (2,1)-total labeling of G, was introduced by Havet and Yu in 2002 (Workshop graphs and algorithms, Dijon, France, 2003; Discrete Math. 308:498–513, 2008). They (Havet and Yu, Discrete Math. 308:498–513, 2008) obtain the bound $\Delta+1\leq\lambda^{T}_{2}(G)\leq2\Delta+1$ and conjectured $\lambda^{T}_{2}(G)\leq\Delta+3$ . In this paper, we obtain that λ(G(P k ))≤Δ+2 for k≥5, and conjecture λ(G(P 4))≤Δ+2 for any graph G with maximum degree Δ.  相似文献   

2.
Suppose G is a graph. Two edges e and e′ in G are said to be adjacent if they share a common end vertex, and distance two apart if they are nonadjacent but both are adjacent to a common edge. Let j and k be two positive integers. An L(j,k)-edge-labeling of a graph G is an assignment of nonnegative integers, called labels, to the edges of G such that the difference between labels of any two adjacent edges is at least j, and the difference between labels of any two edges that are distance two apart is at least k. The minimum range of labels over all L(j,k)-edge-labelings of a graph G is called the L(j,k)-edge-labeling number of G, denoted by $\lambda_{j,k}'(G)$ . Let m, j and k be positive integers. An m-circular-L(j,k)-edge-labeling of a graph G is an assignment f from {0,1,…,m?1} to the edges of G such that, for any two edges e and e′, |f(e)?f(e′)| m j if e and e′ are adjacent, and |f(e)?f(e′)| m k if e and e′ are distance two apart, where |a| m =min{a,m?a}. The minimum m such that G has an m-circular-L(j,k)-edge-labeling is called the circular-L(j,k)-edge-labeling number of G, denoted by $\sigma_{j,k}'(G)$ . This paper investigates the L(1,1)-edge-labeling numbers, the L(2,1)-edge-labeling numbers and the circular-L(2,1)-edge-labeling numbers of the hexagonal lattice, the square lattice, the triangular lattice and the strong product of two infinite paths.  相似文献   

3.
Let p and q be positive integers. An L(p,q)-labeling of a graph G with a span s is a labeling of its vertices by integers between 0 and s such that adjacent vertices of G are labeled using colors at least p apart, and vertices having a common neighbor are labeled using colors at least q apart. We denote by λ p,q (G) the least integer k such that G has an L(p,q)-labeling with span k. The maximum average degree of a graph G, denoted by $\operatorname {Mad}(G)$ , is the maximum among the average degrees of its subgraphs (i.e. $\operatorname {Mad}(G) = \max\{\frac{2|E(H)|}{|V(H)|} ; H \subseteq G \}$ ). We consider graphs G with $\operatorname {Mad}(G) < \frac{10}{3}$ , 3 and $\frac{14}{5}$ . These sets of graphs contain planar graphs with girth 5, 6 and 7 respectively. We prove in this paper that every graph G with maximum average degree m and maximum degree Δ has:
  • λ p,q (G)≤(2q?1)Δ+6p+10q?8 if $m < \frac{10}{3}$ and p≥2q.
  • λ p,q (G)≤(2q?1)Δ+4p+14q?9 if $m < \frac{10}{3}$ and 2q>p.
  • λ p,q (G)≤(2q?1)Δ+4p+6q?5 if m<3.
  • λ p,q (G)≤(2q?1)Δ+4p+4q?4 if $m < \frac{14}{5}$ .
  • We give also some refined bounds for specific values of p, q, or Δ. By the way we improve results of Lih and Wang (SIAM J. Discrete Math. 17(2):264–275, 2003).  相似文献   

    4.
    Let k be a positive integer and let G be a graph with vertex set V(G). The total {k}-dominating function (T{k}DF) of a graph G is a function f from V(G) to the set {0,1,2,??,k}, such that for each vertex v??V(G), the sum of the values of all its neighbors assigned by f is at least k. A set {f 1,f 2,??,f d } of pairwise different T{k}DFs of G with the property that $\sum_{i=1}^{d}f_{i}(v)\leq k$ for each v??V(G), is called a total {k}-dominating family (T{k}D family) of G. The total {k}-domatic number of a graph G, denoted by $d_{t}^{\{k\}}(G)$ , is the maximum number of functions in a T{k}D family. In this paper, we determine the exact values of the total {k}-domatic numbers of wheels and complete graphs, which answers an open problem of Sheikholeslami and Volkmann (J. Comb. Optim., 2010) and completes a result in the same paper.  相似文献   

    5.
    Let $\chi'_{a}(G)$ and Δ(G) denote the acyclic chromatic index and the maximum degree of a graph G, respectively. Fiam?ík conjectured that $\chi'_{a}(G)\leq \varDelta (G)+2$ . Even for planar graphs, this conjecture remains open with large gap. Let G be a planar graph without 4-cycles. Fiedorowicz et al. showed that $\chi'_{a}(G)\leq \varDelta (G)+15$ . Recently Hou et al. improved the upper bound to Δ(G)+4. In this paper, we further improve the upper bound to Δ(G)+3.  相似文献   

    6.
    Given a graph G and positive integers p,q with pq, the (p,q)-total number $\lambda_{p,q}^{T}(G)$ of G is the width of the smallest range of integers that suffices to label the vertices and the edges of G such that the labels of any two adjacent vertices are at least q apart, the labels of any two adjacent edges are at least q apart, and the difference between the labels of a vertex and its incident edges is at least p. Havet and Yu (Discrete Math 308:496–513, 2008) first introduced this problem and determined the exact value of $\lambda_{p,1}^{T}(K_{n})$ except for even n with p+5≤n≤6p 2?10p+4. Their proof for showing that $\lambda _{p,1}^{T}(K_{n})\leq n+2p-3$ for odd n has some mistakes. In this paper, we prove that if n is odd, then $\lambda_{p}^{T}(K_{n})\leq n+2p-3$ if p=2, p=3, or $4\lfloor\frac{p}{2}\rfloor+3\leq n\leq4p-1$ . And we extend some results that were given in Havet and Yu (Discrete Math 308:496–513, 2008). Beside these, we give a lower bound for $\lambda_{p,q}^{T}(K_{n})$ under the condition that q<p<2q.  相似文献   

    7.
    A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic number p(G) (respectively, strong parity edge-chromatic number $\widehat{p}(G)$ ) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that $\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$ for any graph G. In this paper, we determine $\widehat{p}(G)$ and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine $\widehat{p}(K_{m,n})$ and p(K m,n ) for mn with n≡0,?1,?2 (mod 2?lg?m?).  相似文献   

    8.
    A k-coloring of a graph G=(V,E) is a mapping c:V??{1,2,??,k}. The coloring c is injective if, for every vertex v??V, all the neighbors of v are assigned with distinct colors. The injective chromatic number ?? i (G) of G is the smallest k such that G has an injective k-coloring. In this paper, we prove that every K 4-minor free graph G with maximum degree ????1 has $\chi_{i}(G)\le \lceil \frac{3}{2}\Delta\rceil$ . Moreover, some related results and open problems are given.  相似文献   

    9.
    In this paper, we initiate the study of total liar’s domination of a graph. A subset L?V of a graph G=(V,E) is called a total liar’s dominating set of G if (i) for all vV, |N G (v)∩L|≥2 and (ii) for every pair u,vV of distinct vertices, |(N G (u)∪N G (v))∩L|≥3. The total liar’s domination number of a graph G is the cardinality of a minimum total liar’s dominating set of G and is denoted by γ TLR (G). The Minimum Total Liar’s Domination Problem is to find a total liar’s dominating set of minimum cardinality of the input graph G. Given a graph G and a positive integer k, the Total Liar’s Domination Decision Problem is to check whether G has a total liar’s dominating set of cardinality at most k. In this paper, we give a necessary and sufficient condition for the existence of a total liar’s dominating set in a graph. We show that the Total Liar’s Domination Decision Problem is NP-complete for general graphs and is NP-complete even for split graphs and hence for chordal graphs. We also propose a 2(lnΔ(G)+1)-approximation algorithm for the Minimum Total Liar’s Domination Problem, where Δ(G) is the maximum degree of the input graph G. We show that Minimum Total Liar’s Domination Problem cannot be approximated within a factor of $(\frac{1}{8}-\epsilon)\ln(|V|)$ for any ?>0, unless NP?DTIME(|V|loglog|V|). Finally, we show that Minimum Total Liar’s Domination Problem is APX-complete for graphs with bounded degree 4.  相似文献   

    10.
    An independent set of a graph G is a set of pairwise non-adjacent vertices. Let \(i_k = i_k(G)\) be the number of independent sets of cardinality k of G. The independence polynomial \(I(G, x)=\sum _{k\geqslant 0}i_k(G)x^k\) defined first by Gutman and Harary has been the focus of considerable research recently, whereas \(i(G)=I(G, 1)\) is called the Merrifield–Simmons index of G. In this paper, we first proved that among all trees of order n,  the kth coefficient \(i_k\) is smallest when the tree is a path, and is largest for star. Moreover, the graph among all trees of order n with diameter at least d whose all coefficients of I(Gx) are largest is identified. Then we identify the graphs among the n-vertex unicyclic graphs (resp. n-vertex connected graphs with clique number \(\omega \)) which simultaneously minimize all coefficients of I(Gx), whereas the opposite problems of simultaneously maximizing all coefficients of I(Gx) among these two classes of graphs are also solved respectively. At last we characterize the graph among all the n-vertex connected graph with chromatic number \(\chi \) (resp. vertex connectivity \(\kappa \)) which simultaneously minimize all coefficients of I(Gx). Our results may deduce some known results on Merrifield–Simmons index of graphs.  相似文献   

    11.
    A proper coloring of the vertices of a graph G is called a star-coloring if the union of every two color classes induces a star forest. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring π such that π(v)∈L(v). If G is L-star-colorable for any list assignment L with |L(v)|≥k for all vV(G), then G is called k-star-choosable. The star list chromatic number of G, denoted by $\chi_{s}^{l}(G)$ , is the smallest integer k such that G is k-star-choosable. In this paper, we prove that every planar subcubic graph is 6-star-choosable.  相似文献   

    12.
    A (kd)-list assignment L of a graph is a function that assigns to each vertex v a list L(v) of at least k colors satisfying \(|L(x)\cap L(y)|\le d\) for each edge xy. An L-coloring is a vertex coloring \(\pi \) such that \(\pi (v) \in L(v)\) for each vertex v and \(\pi (x) \ne \pi (y)\) for each edge xy. A graph G is (kd)-choosable if there exists an L-coloring of G for every (kd)-list assignment L. This concept is known as choosability with separation. In this paper, we will use Thomassen list coloring extension method to prove that planar graphs with neither 6-cycles nor adjacent 4- and 5-cycles are (3, 1)-choosable. This is a strengthening of a result obtained by using Discharging method which says that planar graphs without 5- and 6-cycles are (3, 1)-choosable.  相似文献   

    13.
    For a positive integer \(k\ge 2\), the radio k-coloring problem is an assignment L of non-negative integers (colors) to the vertices of a finite simple graph G satisfying the condition \(|L(u)-L(v)| \ge k+1-d(u,v)\), for any two distinct vertices u, v of G and d(uv) being distance between u, v. The span of L is the largest integer assigned by L, while 0 is taken as the smallest color. An \(rc_k\)-coloring on G is a radio k-coloring on G of minimum span which is referred as the radio k-chromatic number of G and denoted by \(rc_k(G)\). An integer h, \(0<h<rc_k(G)\), is a hole in a \(rc_k\)-coloring on G if h is not assigned by it. In this paper, we construct a larger graph from a graph of a certain class by using a combinatorial property associated with \((k-1)\) consecutive holes in any \(rc_k\)-coloring of a graph. Exploiting the same property, we introduce a new graph parameter, referred as \((k-1)\)-hole index of G and denoted by \(\rho _k(G)\). We also explore several properties of \(\rho _k(G)\) including its upper bound and relation with the path covering number of the complement \(G^c\).  相似文献   

    14.
    A graph G is edge-k-choosable if, whenever we are given a list L(e) of colors with \(|L(e)|\ge k\) for each \(e\in E(G)\), we can choose a color from L(e) for each edge e such that no two adjacent edges receive the same color. In this paper we prove that if G is a planar graph, and each 6-cycle contains at most two chords, then G is edge-k-choosable, where \(k=\max \{8,\Delta (G)+1\}\), and edge-t-choosable, where \(t=\max \{10,\Delta (G)\}\).  相似文献   

    15.
    Let G=(V,E) be a graph. A set of vertices S?V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of $V-\nobreak S$ is adjacent to a vertex in V?S. The total restrained domination number of G, denoted by γ tr (G), is the smallest cardinality of a total restrained dominating set of G. A support vertex of a graph is a vertex of degree at least two which is adjacent to a leaf. We show that $\gamma_{\mathit{tr}}(T)\leq\lfloor\frac{n+2s+\ell-1}{2}\rfloor$ where T is a tree of order n≥3, and s and ? are, respectively, the number of support vertices and leaves of T. We also constructively characterize the trees attaining the aforementioned bound.  相似文献   

    16.
    For a graph G, let τ(G) be the decycling number of G and c(G) be the number of vertex-disjoint cycles of G. It has been proved that c(G)≤τ(G)≤2c(G) for an outerplanar graph G. An outerplanar graph G is called lower-extremal if τ(G)=c(G) and upper-extremal if τ(G)=2c(G). In this paper, we provide a necessary and sufficient condition for an outerplanar graph being upper-extremal. On the other hand, we find a class $\mathcal{S}$ of outerplanar graphs none of which is lower-extremal and show that if G has no subdivision of S for all $S\in \mathcal{S}$ , then G is lower-extremal.  相似文献   

    17.
    A graph G is said to be equitably k-colorable if the vertex set of G can be divided into k independent sets for which any two sets differ in size at most one. The equitable chromatic number of G, \(\chi _{=}(G)\), is the minimum k for which G is equitably k-colorable. The equitable chromatic threshold of G, \(\chi _{=}^{*}(G)\), is the minimum k for which G is equitably \(k'\)-colorable for all \(k'\ge k\). In this paper, the exact values of \(\chi _{=}^{*}(G\Box H)\) and \(\chi _{=}(G\Box H)\) are obtained when G is the square of a cycle or a path and H is a complete bipartite graph.  相似文献   

    18.
    A labeling of a graph G is an injective function f:V(G)→?. The bandwidth sum of a graph G with respect to a labeling f is $B_{s}^{f}(G) = \sum_{uv \in E(G)} |f(u)-f(v)|$ and the bandwidth sum of G is $B_{s}(G) = \min\{B_{s}^{f}(G)\colon f\mbox{ is a labeling of }G\}$ . In this paper, we determine bandwidth sums for some block graphs and cacti.  相似文献   

    19.
    Let \(\chi _2(G)\) and \(\chi _2^l(G)\) be the 2-distance chromatic number and list 2-distance chromatic number of a graph G, respectively. Wegner conjectured that for each planar graph G with maximum degree \(\varDelta \) at least 4, \(\chi _2(G)\le \varDelta +5\) if \(4\le \varDelta \le 7\), and \(\chi _2(G)\le \lfloor \frac{3\varDelta }{2}\rfloor +1\) if \(\varDelta \ge 8\). Let G be a planar graph without 4,5-cycles. We show that if \(\varDelta \ge 26\), then \(\chi _2^l(G)\le \varDelta +3\). There exist planar graphs G with girth \(g(G)=6\) such that \(\chi _2^l(G)=\varDelta +2\) for arbitrarily large \(\varDelta \). In addition, we also discuss the list L(2, 1)-labeling number of G, and prove that \(\lambda _l(G)\le \varDelta +8\) for \(\varDelta \ge 27\).  相似文献   

    20.
    The adjacent vertex distinguishing total coloring of planar graphs   总被引:3,自引:3,他引:0  
    An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices have distinct sets of colors. The minimum number of colors needed for an adjacent vertex distinguishing total coloring of G is denoted by $\chi''_{a}(G)$ . In this paper, we characterize completely the adjacent vertex distinguishing total chromatic number of planar graphs G with large maximum degree Δ by showing that if Δ≥14, then $\varDelta+1\leq \chi''_{a}(G)\leq \varDelta+2$ , and $\chi''_{a}(G)=\varDelta+2$ if and only if G contains two adjacent vertices of maximum degree.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号