首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the hypothesis testing and interval estimation for the intraclass correlation coefficients are considered in a two-way random effects model with interaction. Two particular intraclass correlation coefficients are described in a reliability study. The tests and confidence intervals for the intraclass correlation coefficients are developed when the data are unbalanced. One approach is based on the generalized p-value and generalized confidence interval, the other is based on the modified large-sample idea. These two approaches simplify to the ones in Gilder et al. [2007. Confidence intervals on intraclass correlation coefficients in a balanced two-factor random design. J. Statist. Plann. Inference 137, 1199–1212] when the data are balanced. Furthermore, some statistical properties of the generalized confidence intervals are investigated. Finally, some simulation results to compare the performance of the modified large-sample approach with that of the generalized approach are reported. The simulation results indicate that the modified large-sample approach performs better than the generalized approach in the coverage probability and expected length of the confidence interval.  相似文献   

2.
Recently, Ong and Mukerjee [Probability matching priors for two-sided tolerance intervals in balanced one-way and two-way nested random effects models. Statistics. 2011;45:403–411] developed two-sided Bayesian tolerance intervals, with approximate frequentist validity, for a future observation in balanced one-way and two-way nested random effects models. These were obtained using probability matching priors (PMP). On the other hand, Krishnamoorthy and Lian [Closed-form approximate tolerance intervals for some general linear models and comparison studies. J Stat Comput Simul. 2012;82:547–563] studied closed-form approximate tolerance intervals by the modified large-sample (MLS) approach. We compare the performances of these two approaches for normal as well as non-normal error distributions. Monte Carlo simulation methods are used to evaluate the resulting tolerance intervals with regard to achieved confidence levels and expected widths. It turns out that PMP tolerance intervals are less conservative for data with large number of classes and small number of observations per class and the MLS procedure is preferable for smaller sample sizes.  相似文献   

3.
Asymptotic approaches are traditionally used to calculate confidence intervals for intraclass correlation coefficient in a clustered binary study. When sample size is small to medium, or correlation or response rate is near the boundary, asymptotic intervals often do not have satisfactory performance with regard to coverage. We propose using the importance sampling method to construct the profile confidence limits for the intraclass correlation coefficient. Importance sampling is a simulation based approach to reduce the variance of the estimated parameter. Four existing asymptotic limits are used as statistical quantities for sample space ordering in the importance sampling method. Simulation studies are performed to evaluate the performance of the proposed accurate intervals with regard to coverage and interval width. Simulation results indicate that the accurate intervals based on the asymptotic limits by Fleiss and Cuzick generally have shorter width than others in many cases, while the accurate intervals based on Zou and Donner asymptotic limits outperform others when correlation and response rate are close to their boundaries.  相似文献   

4.
In this article, the hypothesis testing and interval estimation for the reliability parameter are considered in balanced and unbalanced one-way random models. The tests and confidence intervals for the reliability parameter are developed using the concepts of generalized p-value and generalized confidence interval. Furthermore, some simulation results are presented to compare the performances between the proposed approach and the existing approach. For balanced models, the simulation results indicate that the proposed approach can provide satisfactory coverage probabilities and performs better than the existing approaches across the wide array of scenarios, especially for small sample sizes. For unbalanced models, the simulation results show that the two proposed approaches perform more satisfactorily than the existing approach in most cases. Finally, the proposed approaches are illustrated using two real examples.  相似文献   

5.
This article examines confidence intervals for the single coefficient of variation and the difference of coefficients of variation in the two-parameter exponential distributions, using the method of variance of estimates recovery (MOVER), the generalized confidence interval (GCI), and the asymptotic confidence interval (ACI). In simulation, the results indicate that coverage probabilities of the GCI maintain the nominal level in general. The MOVER performs well in terms of coverage probability when data only consist of positive values, but it has wider expected length. The coverage probabilities of the ACI satisfy the target for large sample sizes. We also illustrate our confidence intervals using a real-world example in the area of medical science.  相似文献   

6.
The conventional confidence interval for the intraclass correlation coefficient assumes equal-tail probabilities. In general, the equal-tail probability interval is biased and other interval procedures should be considered. Unbiased confidence intervals for the intraclass correlation coefficient are readily available. The equal-tail probability and unbiased intervals have exact coverage as they are constructed using the pivotal quantity method. In this article, confidence intervals for the intraclass correlation coefficient are built using balanced and unbalanced one-way random effects models. The expected length of confidence intervals serves as a tool to compare the two procedures. The unbiased confidence interval outperforms the equal-tail probability interval if the intraclass correlation coefficient is small and the equal-tail probability interval outperforms the unbiased interval if the intraclass correlation coefficient is large.  相似文献   

7.
In this paper, we present several resampling methods for interval estimation for the common intraclass correlation coefficients. Comparisons are made on the coverage probabilities and average lengths with confidence intervals estimated by using the generalized pivots. Most of the methods proposed in this article produce confidence intervals with better probabilities and shorter average lengths than that produced by using generalized pivots.  相似文献   

8.
In this article, we study inferences for reliability functions of the system having two components connected in series. Suppose that the lifetime of one component has a lognormal distribution. Lognormal, exponential, and weibull distributions are considered for the lifetime of the other component. Using the generalized inference approach, we obtain confidence intervals of our interested parameters with good coverage. Some frequentist properties in small-sample cases and large-sample cases are proved.  相似文献   

9.
Methods for interval estimation and hypothesis testing about the ratio of two independent inverse Gaussian (IG) means based on the concept of generalized variable approach are proposed. As assessed by simulation, the coverage probabilities of the proposed approach are found to be very close to the nominal level even for small samples. The proposed new approaches are conceptually simple and are easy to use. Similar procedures are developed for constructing confidence intervals and hypothesis testing about the difference between two independent IG means. Monte Carlo comparison studies show that the results based on the generalized variable approach are as good as those based on the modified likelihood ratio test. The methods are illustrated using two examples.  相似文献   

10.
In this article, we propose an approach for estimating the confidence interval of the common intraclass correlation coefficient based on the profile likelihood. Comparisons are made with a procedure using the concept of generalized pivots. The method presented is less computationally demanding than the method using generalized pivots. The approach also provides better coverage, and shorter lengths of confidence intervals for the case when the value of the common intraclass correlation coefficient is low. The lengths of confidence intervals given by both methods are quite comparable for high but less realistic values of the common intraclass correlation coefficient.  相似文献   

11.
Confidence intervals [based on F-distribution and (Z) standard normal distribution] for a linear contrast in intraclass correlation coefficients under unequal family sizes for several populations based on several independent multinormal samples have been proposed. It has been found that the confidence interval based on F-distribution consistently and reliably produced better results in terms of shorter average length of the interval than the confidence interval based on standard normal distribution for various combinations of intraclass correlation coefficient values. The coverage probability of the interval based on F-distribution is competitive with the coverage probability of the interval based on standard normal distribution. The interval based on F-distribution can be used for both small sample and large sample situations. An example with real life data has been presented.  相似文献   

12.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

13.
For constructing simultaneous confidence intervals for ratios of means for lognormal distributions, two approaches using a two-step method of variance estimates recovery are proposed. The first approach proposes fiducial generalized confidence intervals (FGCIs) in the first step followed by the method of variance estimates recovery (MOVER) in the second step (FGCIs–MOVER). The second approach uses MOVER in the first and second steps (MOVER–MOVER). Performance of proposed approaches is compared with simultaneous fiducial generalized confidence intervals (SFGCIs). Monte Carlo simulation is used to evaluate the performance of these approaches in terms of coverage probability, average interval width, and time consumption.  相似文献   

14.
Multi-sample inference for simple-tree alternatives with ranked-set samples   总被引:1,自引:0,他引:1  
This paper develops a non‐parametric multi‐sample inference for simple‐tree alternatives for ranked‐set samples. The multi‐sample inference provides simultaneous one‐sample sign confidence intervals for the population medians. The decision rule compares these intervals to achieve the desired type I error. For the specified upper bounds on the experiment‐wise error rates, corresponding individual confidence coefficients are presented. It is shown that the testing procedure is distribution‐free. To achieve the desired confidence coefficients for multi‐sample inference, a nonparametric confidence interval is constructed by interpolating the adjacent order statistics. Interpolation coefficients and coverage probabilities are provided, along with the nominal levels.  相似文献   

15.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

16.
If a population contains many zero values and the sample size is not very large, the traditional normal approximation‐based confidence intervals for the population mean may have poor coverage probabilities. This problem is substantially reduced by constructing parametric likelihood ratio intervals when an appropriate mixture model can be found. In the context of survey sampling, however, there is a general preference for making minimal assumptions about the population under study. The authors have therefore investigated the coverage properties of nonparametric empirical likelihood confidence intervals for the population mean. They show that under a variety of hypothetical populations, these intervals often outperformed parametric likelihood intervals by having more balanced coverage rates and larger lower bounds. The authors illustrate their methodology using data from the Canadian Labour Force Survey for the year 2000.  相似文献   

17.
Results of the Monte Carlo study of the performance of a maximum likelihood estimation in a Weibull parametric regression model with two explanatory variables are presented. One simulation run contained 1000 samples censored on the average by the amount of 0-30%. Each simulatedsample was generated in a form of two-factor two-level balanced experiment. The confidence intervals were computed using the large-sample normal approximation via the matrix of observed information. For small sample sizes the estimates of the scale parameter b of the loglifetime were significantly negatively biased, which resulted in a poor quality of confidence intervals for b and the low-level quantiles. All estimators improved their quality when the nominal value of b decreased. A moderate amount of censoring improved the quality of point and confidence estimation. The reparametrization b 7 produced rather accurate confidence intervals. Exact confidence intervals for b in case of non-censoring were obtained using the pivotal quantity b/b.  相似文献   

18.
In this paper, we consider three distribution-free confidence intervals for quantiles given joint records from two independent sequences of continuous random variables with a common continuous distribution function. The coverage probabilities of these intervals are compared. We then compute the universal bounds of the expected widths of the proposed confidence intervals. These results naturally extend to any number of independent sequences instead of just two. Finally, the proposed confidence intervals are applied for a real data set to illustrate the practical usefulness of the procedures developed here.  相似文献   

19.
In this paper, we consider the interval estimation problem on the process capability indices in general random effect model with balanced data. The confidence intervals for three commonly used process capability indices are developed by using the concept of generalized confidence interval. Furthermore, some simulation results on the coverage probability and expected value of the generalized lower confidence limits are reported. The simulation results indicate that the proposed confidence intervals do provide quite satisfactory coverage probabilities.  相似文献   

20.
Abstract Calculation of a confidence interval for intraclass correlation to assess inter‐rater reliability is problematic when the number of raters is small and the rater effect is not negligible. Intervals produced by existing methods are uninformative: the lower bound is often close to zero, even in cases where the reliability is good and the sample size is large. In this paper, we show that this problem is unavoidable without extra assumptions and we propose two new approaches. The first approach assumes that the raters are sufficiently trained and is related to a sensitivity analysis. The second approach is based on a model with fixed rater effect. Using either approach, we obtain conservative and informative confidence intervals even from samples with only two raters. We illustrate our point with data on the development of neuromotor functions in children and adolescents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号